Evaluate
\frac{367}{140}\approx 2.621428571
Factor
\frac{367}{5 \cdot 7 \cdot 2 ^ {2}} = 2\frac{87}{140} = 2.6214285714285714
Share
Copied to clipboard
\frac{1}{20}+\frac{18}{7}
Convert decimal number 0.05 to fraction \frac{5}{100}. Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
\frac{7}{140}+\frac{360}{140}
Least common multiple of 20 and 7 is 140. Convert \frac{1}{20} and \frac{18}{7} to fractions with denominator 140.
\frac{7+360}{140}
Since \frac{7}{140} and \frac{360}{140} have the same denominator, add them by adding their numerators.
\frac{367}{140}
Add 7 and 360 to get 367.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}