Solve for x
x=\frac{\sqrt{473916741}}{546}+\frac{1229}{182}\approx 46.623862393
x=-\frac{\sqrt{473916741}}{546}+\frac{1229}{182}\approx -33.118367888
Graph
Share
Copied to clipboard
0.0273x^{2}-0.3687x-42.1541=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.3687\right)±\sqrt{\left(-0.3687\right)^{2}-4\times 0.0273\left(-42.1541\right)}}{2\times 0.0273}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0273 for a, -0.3687 for b, and -42.1541 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.3687\right)±\sqrt{0.13593969-4\times 0.0273\left(-42.1541\right)}}{2\times 0.0273}
Square -0.3687 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.3687\right)±\sqrt{0.13593969-0.1092\left(-42.1541\right)}}{2\times 0.0273}
Multiply -4 times 0.0273.
x=\frac{-\left(-0.3687\right)±\sqrt{0.13593969+4.60322772}}{2\times 0.0273}
Multiply -0.1092 times -42.1541 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.3687\right)±\sqrt{4.73916741}}{2\times 0.0273}
Add 0.13593969 to 4.60322772 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.3687\right)±\frac{\sqrt{473916741}}{10000}}{2\times 0.0273}
Take the square root of 4.73916741.
x=\frac{0.3687±\frac{\sqrt{473916741}}{10000}}{2\times 0.0273}
The opposite of -0.3687 is 0.3687.
x=\frac{0.3687±\frac{\sqrt{473916741}}{10000}}{0.0546}
Multiply 2 times 0.0273.
x=\frac{\sqrt{473916741}+3687}{0.0546\times 10000}
Now solve the equation x=\frac{0.3687±\frac{\sqrt{473916741}}{10000}}{0.0546} when ± is plus. Add 0.3687 to \frac{\sqrt{473916741}}{10000}.
x=\frac{\sqrt{473916741}}{546}+\frac{1229}{182}
Divide \frac{3687+\sqrt{473916741}}{10000} by 0.0546 by multiplying \frac{3687+\sqrt{473916741}}{10000} by the reciprocal of 0.0546.
x=\frac{3687-\sqrt{473916741}}{0.0546\times 10000}
Now solve the equation x=\frac{0.3687±\frac{\sqrt{473916741}}{10000}}{0.0546} when ± is minus. Subtract \frac{\sqrt{473916741}}{10000} from 0.3687.
x=-\frac{\sqrt{473916741}}{546}+\frac{1229}{182}
Divide \frac{3687-\sqrt{473916741}}{10000} by 0.0546 by multiplying \frac{3687-\sqrt{473916741}}{10000} by the reciprocal of 0.0546.
x=\frac{\sqrt{473916741}}{546}+\frac{1229}{182} x=-\frac{\sqrt{473916741}}{546}+\frac{1229}{182}
The equation is now solved.
0.0273x^{2}-0.3687x-42.1541=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
0.0273x^{2}-0.3687x-42.1541-\left(-42.1541\right)=-\left(-42.1541\right)
Add 42.1541 to both sides of the equation.
0.0273x^{2}-0.3687x=-\left(-42.1541\right)
Subtracting -42.1541 from itself leaves 0.
0.0273x^{2}-0.3687x=42.1541
Subtract -42.1541 from 0.
\frac{0.0273x^{2}-0.3687x}{0.0273}=\frac{42.1541}{0.0273}
Divide both sides of the equation by 0.0273, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.3687}{0.0273}\right)x=\frac{42.1541}{0.0273}
Dividing by 0.0273 undoes the multiplication by 0.0273.
x^{2}-\frac{1229}{91}x=\frac{42.1541}{0.0273}
Divide -0.3687 by 0.0273 by multiplying -0.3687 by the reciprocal of 0.0273.
x^{2}-\frac{1229}{91}x=\frac{421541}{273}
Divide 42.1541 by 0.0273 by multiplying 42.1541 by the reciprocal of 0.0273.
x^{2}-\frac{1229}{91}x+\left(-\frac{1229}{182}\right)^{2}=\frac{421541}{273}+\left(-\frac{1229}{182}\right)^{2}
Divide -\frac{1229}{91}, the coefficient of the x term, by 2 to get -\frac{1229}{182}. Then add the square of -\frac{1229}{182} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1229}{91}x+\frac{1510441}{33124}=\frac{421541}{273}+\frac{1510441}{33124}
Square -\frac{1229}{182} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1229}{91}x+\frac{1510441}{33124}=\frac{157972247}{99372}
Add \frac{421541}{273} to \frac{1510441}{33124} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1229}{182}\right)^{2}=\frac{157972247}{99372}
Factor x^{2}-\frac{1229}{91}x+\frac{1510441}{33124}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1229}{182}\right)^{2}}=\sqrt{\frac{157972247}{99372}}
Take the square root of both sides of the equation.
x-\frac{1229}{182}=\frac{\sqrt{473916741}}{546} x-\frac{1229}{182}=-\frac{\sqrt{473916741}}{546}
Simplify.
x=\frac{\sqrt{473916741}}{546}+\frac{1229}{182} x=-\frac{\sqrt{473916741}}{546}+\frac{1229}{182}
Add \frac{1229}{182} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}