Solve for x
x=\frac{z}{5-3z}
z\neq \frac{5}{3}
Solve for z
z=\frac{5x}{3x+1}
x\neq -\frac{1}{3}
Share
Copied to clipboard
-z=3xz-5x
Use the distributive property to multiply x by 3z-5.
3xz-5x=-z
Swap sides so that all variable terms are on the left hand side.
\left(3z-5\right)x=-z
Combine all terms containing x.
\frac{\left(3z-5\right)x}{3z-5}=-\frac{z}{3z-5}
Divide both sides by 3z-5.
x=-\frac{z}{3z-5}
Dividing by 3z-5 undoes the multiplication by 3z-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}