Solve for x
x=-3
x=-2
Graph
Share
Copied to clipboard
-x-5-0.5x^{2}=1.5x-2
Subtract 0.5x^{2} from both sides.
-x-5-0.5x^{2}-1.5x=-2
Subtract 1.5x from both sides.
-x-5-0.5x^{2}-1.5x+2=0
Add 2 to both sides.
-x-3-0.5x^{2}-1.5x=0
Add -5 and 2 to get -3.
-2.5x-3-0.5x^{2}=0
Combine -x and -1.5x to get -2.5x.
-0.5x^{2}-2.5x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2.5\right)±\sqrt{\left(-2.5\right)^{2}-4\left(-0.5\right)\left(-3\right)}}{2\left(-0.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.5 for a, -2.5 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2.5\right)±\sqrt{6.25-4\left(-0.5\right)\left(-3\right)}}{2\left(-0.5\right)}
Square -2.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2.5\right)±\sqrt{6.25+2\left(-3\right)}}{2\left(-0.5\right)}
Multiply -4 times -0.5.
x=\frac{-\left(-2.5\right)±\sqrt{6.25-6}}{2\left(-0.5\right)}
Multiply 2 times -3.
x=\frac{-\left(-2.5\right)±\sqrt{0.25}}{2\left(-0.5\right)}
Add 6.25 to -6.
x=\frac{-\left(-2.5\right)±\frac{1}{2}}{2\left(-0.5\right)}
Take the square root of 0.25.
x=\frac{2.5±\frac{1}{2}}{2\left(-0.5\right)}
The opposite of -2.5 is 2.5.
x=\frac{2.5±\frac{1}{2}}{-1}
Multiply 2 times -0.5.
x=\frac{3}{-1}
Now solve the equation x=\frac{2.5±\frac{1}{2}}{-1} when ± is plus. Add 2.5 to \frac{1}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-3
Divide 3 by -1.
x=\frac{2}{-1}
Now solve the equation x=\frac{2.5±\frac{1}{2}}{-1} when ± is minus. Subtract \frac{1}{2} from 2.5 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide 2 by -1.
x=-3 x=-2
The equation is now solved.
-x-5-0.5x^{2}=1.5x-2
Subtract 0.5x^{2} from both sides.
-x-5-0.5x^{2}-1.5x=-2
Subtract 1.5x from both sides.
-x-0.5x^{2}-1.5x=-2+5
Add 5 to both sides.
-x-0.5x^{2}-1.5x=3
Add -2 and 5 to get 3.
-2.5x-0.5x^{2}=3
Combine -x and -1.5x to get -2.5x.
-0.5x^{2}-2.5x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.5x^{2}-2.5x}{-0.5}=\frac{3}{-0.5}
Multiply both sides by -2.
x^{2}+\left(-\frac{2.5}{-0.5}\right)x=\frac{3}{-0.5}
Dividing by -0.5 undoes the multiplication by -0.5.
x^{2}+5x=\frac{3}{-0.5}
Divide -2.5 by -0.5 by multiplying -2.5 by the reciprocal of -0.5.
x^{2}+5x=-6
Divide 3 by -0.5 by multiplying 3 by the reciprocal of -0.5.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=0.25
Add -6 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=0.25
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{0.25}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Simplify.
x=-2 x=-3
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}