Solve for g
\left\{\begin{matrix}g=\frac{2\left(tx+h\right)}{t^{2}}\text{, }&t\neq 0\\g\in \mathrm{R}\text{, }&h=0\text{ and }t=0\end{matrix}\right.
Solve for h
h=\frac{t\left(gt-2x\right)}{2}
Graph
Share
Copied to clipboard
-2h=\left(2x-gt\right)t
Multiply both sides of the equation by 2.
-2h=2xt-gt^{2}
Use the distributive property to multiply 2x-gt by t.
2xt-gt^{2}=-2h
Swap sides so that all variable terms are on the left hand side.
-gt^{2}=-2h-2xt
Subtract 2xt from both sides.
\left(-t^{2}\right)g=-2tx-2h
The equation is in standard form.
\frac{\left(-t^{2}\right)g}{-t^{2}}=\frac{-2tx-2h}{-t^{2}}
Divide both sides by -t^{2}.
g=\frac{-2tx-2h}{-t^{2}}
Dividing by -t^{2} undoes the multiplication by -t^{2}.
g=\frac{2\left(tx+h\right)}{t^{2}}
Divide -2h-2xt by -t^{2}.
-2h=\left(2x-gt\right)t
Multiply both sides of the equation by 2.
-2h=2xt-gt^{2}
Use the distributive property to multiply 2x-gt by t.
-2h=2tx-gt^{2}
The equation is in standard form.
\frac{-2h}{-2}=\frac{t\left(2x-gt\right)}{-2}
Divide both sides by -2.
h=\frac{t\left(2x-gt\right)}{-2}
Dividing by -2 undoes the multiplication by -2.
h=-\frac{t\left(2x-gt\right)}{2}
Divide t\left(2x-gt\right) by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}