Solve for x
x=\frac{\sqrt{42}}{3}+4\approx 6.160246899
x=-\frac{\sqrt{42}}{3}+4\approx 1.839753101
Graph
Share
Copied to clipboard
-9x^{2}+72x-102=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-72±\sqrt{72^{2}-4\left(-9\right)\left(-102\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 72 for b, and -102 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72±\sqrt{5184-4\left(-9\right)\left(-102\right)}}{2\left(-9\right)}
Square 72.
x=\frac{-72±\sqrt{5184+36\left(-102\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-72±\sqrt{5184-3672}}{2\left(-9\right)}
Multiply 36 times -102.
x=\frac{-72±\sqrt{1512}}{2\left(-9\right)}
Add 5184 to -3672.
x=\frac{-72±6\sqrt{42}}{2\left(-9\right)}
Take the square root of 1512.
x=\frac{-72±6\sqrt{42}}{-18}
Multiply 2 times -9.
x=\frac{6\sqrt{42}-72}{-18}
Now solve the equation x=\frac{-72±6\sqrt{42}}{-18} when ± is plus. Add -72 to 6\sqrt{42}.
x=-\frac{\sqrt{42}}{3}+4
Divide -72+6\sqrt{42} by -18.
x=\frac{-6\sqrt{42}-72}{-18}
Now solve the equation x=\frac{-72±6\sqrt{42}}{-18} when ± is minus. Subtract 6\sqrt{42} from -72.
x=\frac{\sqrt{42}}{3}+4
Divide -72-6\sqrt{42} by -18.
x=-\frac{\sqrt{42}}{3}+4 x=\frac{\sqrt{42}}{3}+4
The equation is now solved.
-9x^{2}+72x-102=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-9x^{2}+72x-102-\left(-102\right)=-\left(-102\right)
Add 102 to both sides of the equation.
-9x^{2}+72x=-\left(-102\right)
Subtracting -102 from itself leaves 0.
-9x^{2}+72x=102
Subtract -102 from 0.
\frac{-9x^{2}+72x}{-9}=\frac{102}{-9}
Divide both sides by -9.
x^{2}+\frac{72}{-9}x=\frac{102}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-8x=\frac{102}{-9}
Divide 72 by -9.
x^{2}-8x=-\frac{34}{3}
Reduce the fraction \frac{102}{-9} to lowest terms by extracting and canceling out 3.
x^{2}-8x+\left(-4\right)^{2}=-\frac{34}{3}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{34}{3}+16
Square -4.
x^{2}-8x+16=\frac{14}{3}
Add -\frac{34}{3} to 16.
\left(x-4\right)^{2}=\frac{14}{3}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{14}{3}}
Take the square root of both sides of the equation.
x-4=\frac{\sqrt{42}}{3} x-4=-\frac{\sqrt{42}}{3}
Simplify.
x=\frac{\sqrt{42}}{3}+4 x=-\frac{\sqrt{42}}{3}+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}