Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-54 ab=-81\left(-5\right)=405
Factor the expression by grouping. First, the expression needs to be rewritten as -81x^{2}+ax+bx-5. To find a and b, set up a system to be solved.
-1,-405 -3,-135 -5,-81 -9,-45 -15,-27
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 405.
-1-405=-406 -3-135=-138 -5-81=-86 -9-45=-54 -15-27=-42
Calculate the sum for each pair.
a=-9 b=-45
The solution is the pair that gives sum -54.
\left(-81x^{2}-9x\right)+\left(-45x-5\right)
Rewrite -81x^{2}-54x-5 as \left(-81x^{2}-9x\right)+\left(-45x-5\right).
9x\left(-9x-1\right)+5\left(-9x-1\right)
Factor out 9x in the first and 5 in the second group.
\left(-9x-1\right)\left(9x+5\right)
Factor out common term -9x-1 by using distributive property.
-81x^{2}-54x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\left(-81\right)\left(-5\right)}}{2\left(-81\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-54\right)±\sqrt{2916-4\left(-81\right)\left(-5\right)}}{2\left(-81\right)}
Square -54.
x=\frac{-\left(-54\right)±\sqrt{2916+324\left(-5\right)}}{2\left(-81\right)}
Multiply -4 times -81.
x=\frac{-\left(-54\right)±\sqrt{2916-1620}}{2\left(-81\right)}
Multiply 324 times -5.
x=\frac{-\left(-54\right)±\sqrt{1296}}{2\left(-81\right)}
Add 2916 to -1620.
x=\frac{-\left(-54\right)±36}{2\left(-81\right)}
Take the square root of 1296.
x=\frac{54±36}{2\left(-81\right)}
The opposite of -54 is 54.
x=\frac{54±36}{-162}
Multiply 2 times -81.
x=\frac{90}{-162}
Now solve the equation x=\frac{54±36}{-162} when ± is plus. Add 54 to 36.
x=-\frac{5}{9}
Reduce the fraction \frac{90}{-162} to lowest terms by extracting and canceling out 18.
x=\frac{18}{-162}
Now solve the equation x=\frac{54±36}{-162} when ± is minus. Subtract 36 from 54.
x=-\frac{1}{9}
Reduce the fraction \frac{18}{-162} to lowest terms by extracting and canceling out 18.
-81x^{2}-54x-5=-81\left(x-\left(-\frac{5}{9}\right)\right)\left(x-\left(-\frac{1}{9}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{5}{9} for x_{1} and -\frac{1}{9} for x_{2}.
-81x^{2}-54x-5=-81\left(x+\frac{5}{9}\right)\left(x+\frac{1}{9}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-81x^{2}-54x-5=-81\times \frac{-9x-5}{-9}\left(x+\frac{1}{9}\right)
Add \frac{5}{9} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-81x^{2}-54x-5=-81\times \frac{-9x-5}{-9}\times \frac{-9x-1}{-9}
Add \frac{1}{9} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-81x^{2}-54x-5=-81\times \frac{\left(-9x-5\right)\left(-9x-1\right)}{-9\left(-9\right)}
Multiply \frac{-9x-5}{-9} times \frac{-9x-1}{-9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-81x^{2}-54x-5=-81\times \frac{\left(-9x-5\right)\left(-9x-1\right)}{81}
Multiply -9 times -9.
-81x^{2}-54x-5=-\left(-9x-5\right)\left(-9x-1\right)
Cancel out 81, the greatest common factor in -81 and 81.