Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-80x^{2}+26x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-26±\sqrt{26^{2}-4\left(-80\right)\times 2}}{2\left(-80\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26±\sqrt{676-4\left(-80\right)\times 2}}{2\left(-80\right)}
Square 26.
x=\frac{-26±\sqrt{676+320\times 2}}{2\left(-80\right)}
Multiply -4 times -80.
x=\frac{-26±\sqrt{676+640}}{2\left(-80\right)}
Multiply 320 times 2.
x=\frac{-26±\sqrt{1316}}{2\left(-80\right)}
Add 676 to 640.
x=\frac{-26±2\sqrt{329}}{2\left(-80\right)}
Take the square root of 1316.
x=\frac{-26±2\sqrt{329}}{-160}
Multiply 2 times -80.
x=\frac{2\sqrt{329}-26}{-160}
Now solve the equation x=\frac{-26±2\sqrt{329}}{-160} when ± is plus. Add -26 to 2\sqrt{329}.
x=\frac{13-\sqrt{329}}{80}
Divide -26+2\sqrt{329} by -160.
x=\frac{-2\sqrt{329}-26}{-160}
Now solve the equation x=\frac{-26±2\sqrt{329}}{-160} when ± is minus. Subtract 2\sqrt{329} from -26.
x=\frac{\sqrt{329}+13}{80}
Divide -26-2\sqrt{329} by -160.
-80x^{2}+26x+2=-80\left(x-\frac{13-\sqrt{329}}{80}\right)\left(x-\frac{\sqrt{329}+13}{80}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{13-\sqrt{329}}{80} for x_{1} and \frac{13+\sqrt{329}}{80} for x_{2}.