Factor
-80\left(x-200\right)\left(x-125\right)
Evaluate
-80\left(x-200\right)\left(x-125\right)
Graph
Share
Copied to clipboard
-80x^{2}+26000x-2000000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-26000±\sqrt{26000^{2}-4\left(-80\right)\left(-2000000\right)}}{2\left(-80\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-26000±\sqrt{676000000-4\left(-80\right)\left(-2000000\right)}}{2\left(-80\right)}
Square 26000.
x=\frac{-26000±\sqrt{676000000+320\left(-2000000\right)}}{2\left(-80\right)}
Multiply -4 times -80.
x=\frac{-26000±\sqrt{676000000-640000000}}{2\left(-80\right)}
Multiply 320 times -2000000.
x=\frac{-26000±\sqrt{36000000}}{2\left(-80\right)}
Add 676000000 to -640000000.
x=\frac{-26000±6000}{2\left(-80\right)}
Take the square root of 36000000.
x=\frac{-26000±6000}{-160}
Multiply 2 times -80.
x=-\frac{20000}{-160}
Now solve the equation x=\frac{-26000±6000}{-160} when ± is plus. Add -26000 to 6000.
x=125
Divide -20000 by -160.
x=-\frac{32000}{-160}
Now solve the equation x=\frac{-26000±6000}{-160} when ± is minus. Subtract 6000 from -26000.
x=200
Divide -32000 by -160.
-80x^{2}+26000x-2000000=-80\left(x-125\right)\left(x-200\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 125 for x_{1} and 200 for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}