Solve for x
x = \frac{\sqrt{329} + 19}{16} \approx 2.321147322
x=\frac{19-\sqrt{329}}{16}\approx 0.053852678
Graph
Share
Copied to clipboard
-8x^{2}+19x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-19±\sqrt{19^{2}-4\left(-8\right)\left(-1\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 19 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-8\right)\left(-1\right)}}{2\left(-8\right)}
Square 19.
x=\frac{-19±\sqrt{361+32\left(-1\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-19±\sqrt{361-32}}{2\left(-8\right)}
Multiply 32 times -1.
x=\frac{-19±\sqrt{329}}{2\left(-8\right)}
Add 361 to -32.
x=\frac{-19±\sqrt{329}}{-16}
Multiply 2 times -8.
x=\frac{\sqrt{329}-19}{-16}
Now solve the equation x=\frac{-19±\sqrt{329}}{-16} when ± is plus. Add -19 to \sqrt{329}.
x=\frac{19-\sqrt{329}}{16}
Divide -19+\sqrt{329} by -16.
x=\frac{-\sqrt{329}-19}{-16}
Now solve the equation x=\frac{-19±\sqrt{329}}{-16} when ± is minus. Subtract \sqrt{329} from -19.
x=\frac{\sqrt{329}+19}{16}
Divide -19-\sqrt{329} by -16.
x=\frac{19-\sqrt{329}}{16} x=\frac{\sqrt{329}+19}{16}
The equation is now solved.
-8x^{2}+19x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-8x^{2}+19x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
-8x^{2}+19x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
-8x^{2}+19x=1
Subtract -1 from 0.
\frac{-8x^{2}+19x}{-8}=\frac{1}{-8}
Divide both sides by -8.
x^{2}+\frac{19}{-8}x=\frac{1}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{19}{8}x=\frac{1}{-8}
Divide 19 by -8.
x^{2}-\frac{19}{8}x=-\frac{1}{8}
Divide 1 by -8.
x^{2}-\frac{19}{8}x+\left(-\frac{19}{16}\right)^{2}=-\frac{1}{8}+\left(-\frac{19}{16}\right)^{2}
Divide -\frac{19}{8}, the coefficient of the x term, by 2 to get -\frac{19}{16}. Then add the square of -\frac{19}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{8}x+\frac{361}{256}=-\frac{1}{8}+\frac{361}{256}
Square -\frac{19}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{329}{256}
Add -\frac{1}{8} to \frac{361}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{16}\right)^{2}=\frac{329}{256}
Factor x^{2}-\frac{19}{8}x+\frac{361}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{16}\right)^{2}}=\sqrt{\frac{329}{256}}
Take the square root of both sides of the equation.
x-\frac{19}{16}=\frac{\sqrt{329}}{16} x-\frac{19}{16}=-\frac{\sqrt{329}}{16}
Simplify.
x=\frac{\sqrt{329}+19}{16} x=\frac{19-\sqrt{329}}{16}
Add \frac{19}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}