Evaluate
\frac{89}{7}\approx 12.714285714
Factor
\frac{89}{7} = 12\frac{5}{7} = 12.714285714285714
Share
Copied to clipboard
2\times 5+\frac{2}{-7}-\left(3-4\times 2\right)-2
Divide -8 by -4 to get 2.
10+\frac{2}{-7}-\left(3-4\times 2\right)-2
Multiply 2 and 5 to get 10.
10-\frac{2}{7}-\left(3-4\times 2\right)-2
Fraction \frac{2}{-7} can be rewritten as -\frac{2}{7} by extracting the negative sign.
\frac{70}{7}-\frac{2}{7}-\left(3-4\times 2\right)-2
Convert 10 to fraction \frac{70}{7}.
\frac{70-2}{7}-\left(3-4\times 2\right)-2
Since \frac{70}{7} and \frac{2}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{68}{7}-\left(3-4\times 2\right)-2
Subtract 2 from 70 to get 68.
\frac{68}{7}-\left(3-8\right)-2
Multiply 4 and 2 to get 8.
\frac{68}{7}-\left(-5\right)-2
Subtract 8 from 3 to get -5.
\frac{68}{7}+5-2
The opposite of -5 is 5.
\frac{68}{7}+\frac{35}{7}-2
Convert 5 to fraction \frac{35}{7}.
\frac{68+35}{7}-2
Since \frac{68}{7} and \frac{35}{7} have the same denominator, add them by adding their numerators.
\frac{103}{7}-2
Add 68 and 35 to get 103.
\frac{103}{7}-\frac{14}{7}
Convert 2 to fraction \frac{14}{7}.
\frac{103-14}{7}
Since \frac{103}{7} and \frac{14}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{89}{7}
Subtract 14 from 103 to get 89.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}