Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-7y-30
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=1\left(-30\right)=-30
Factor the expression by grouping. First, the expression needs to be rewritten as y^{2}+ay+by-30. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=-10 b=3
The solution is the pair that gives sum -7.
\left(y^{2}-10y\right)+\left(3y-30\right)
Rewrite y^{2}-7y-30 as \left(y^{2}-10y\right)+\left(3y-30\right).
y\left(y-10\right)+3\left(y-10\right)
Factor out y in the first and 3 in the second group.
\left(y-10\right)\left(y+3\right)
Factor out common term y-10 by using distributive property.
y^{2}-7y-30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-30\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-7\right)±\sqrt{49-4\left(-30\right)}}{2}
Square -7.
y=\frac{-\left(-7\right)±\sqrt{49+120}}{2}
Multiply -4 times -30.
y=\frac{-\left(-7\right)±\sqrt{169}}{2}
Add 49 to 120.
y=\frac{-\left(-7\right)±13}{2}
Take the square root of 169.
y=\frac{7±13}{2}
The opposite of -7 is 7.
y=\frac{20}{2}
Now solve the equation y=\frac{7±13}{2} when ± is plus. Add 7 to 13.
y=10
Divide 20 by 2.
y=-\frac{6}{2}
Now solve the equation y=\frac{7±13}{2} when ± is minus. Subtract 13 from 7.
y=-3
Divide -6 by 2.
y^{2}-7y-30=\left(y-10\right)\left(y-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 10 for x_{1} and -3 for x_{2}.
y^{2}-7y-30=\left(y-10\right)\left(y+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.