Solve for x
x=1
x=-\frac{1}{8}=-0.125
Graph
Share
Copied to clipboard
-7x^{2}+7x=\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply -7x by x-1.
-7x^{2}+7x=x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-7x^{2}+7x-x^{2}=-1
Subtract x^{2} from both sides.
-8x^{2}+7x=-1
Combine -7x^{2} and -x^{2} to get -8x^{2}.
-8x^{2}+7x+1=0
Add 1 to both sides.
x=\frac{-7±\sqrt{7^{2}-4\left(-8\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-8\right)}}{2\left(-8\right)}
Square 7.
x=\frac{-7±\sqrt{49+32}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-7±\sqrt{81}}{2\left(-8\right)}
Add 49 to 32.
x=\frac{-7±9}{2\left(-8\right)}
Take the square root of 81.
x=\frac{-7±9}{-16}
Multiply 2 times -8.
x=\frac{2}{-16}
Now solve the equation x=\frac{-7±9}{-16} when ± is plus. Add -7 to 9.
x=-\frac{1}{8}
Reduce the fraction \frac{2}{-16} to lowest terms by extracting and canceling out 2.
x=-\frac{16}{-16}
Now solve the equation x=\frac{-7±9}{-16} when ± is minus. Subtract 9 from -7.
x=1
Divide -16 by -16.
x=-\frac{1}{8} x=1
The equation is now solved.
-7x^{2}+7x=\left(x-1\right)\left(x+1\right)
Use the distributive property to multiply -7x by x-1.
-7x^{2}+7x=x^{2}-1
Consider \left(x-1\right)\left(x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
-7x^{2}+7x-x^{2}=-1
Subtract x^{2} from both sides.
-8x^{2}+7x=-1
Combine -7x^{2} and -x^{2} to get -8x^{2}.
\frac{-8x^{2}+7x}{-8}=-\frac{1}{-8}
Divide both sides by -8.
x^{2}+\frac{7}{-8}x=-\frac{1}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{7}{8}x=-\frac{1}{-8}
Divide 7 by -8.
x^{2}-\frac{7}{8}x=\frac{1}{8}
Divide -1 by -8.
x^{2}-\frac{7}{8}x+\left(-\frac{7}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{7}{16}\right)^{2}
Divide -\frac{7}{8}, the coefficient of the x term, by 2 to get -\frac{7}{16}. Then add the square of -\frac{7}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{1}{8}+\frac{49}{256}
Square -\frac{7}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{8}x+\frac{49}{256}=\frac{81}{256}
Add \frac{1}{8} to \frac{49}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{16}\right)^{2}=\frac{81}{256}
Factor x^{2}-\frac{7}{8}x+\frac{49}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{16}\right)^{2}}=\sqrt{\frac{81}{256}}
Take the square root of both sides of the equation.
x-\frac{7}{16}=\frac{9}{16} x-\frac{7}{16}=-\frac{9}{16}
Simplify.
x=1 x=-\frac{1}{8}
Add \frac{7}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}