Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-71 ab=-72\left(-7\right)=504
Factor the expression by grouping. First, the expression needs to be rewritten as -72x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
-1,-504 -2,-252 -3,-168 -4,-126 -6,-84 -7,-72 -8,-63 -9,-56 -12,-42 -14,-36 -18,-28 -21,-24
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 504.
-1-504=-505 -2-252=-254 -3-168=-171 -4-126=-130 -6-84=-90 -7-72=-79 -8-63=-71 -9-56=-65 -12-42=-54 -14-36=-50 -18-28=-46 -21-24=-45
Calculate the sum for each pair.
a=-8 b=-63
The solution is the pair that gives sum -71.
\left(-72x^{2}-8x\right)+\left(-63x-7\right)
Rewrite -72x^{2}-71x-7 as \left(-72x^{2}-8x\right)+\left(-63x-7\right).
8x\left(-9x-1\right)+7\left(-9x-1\right)
Factor out 8x in the first and 7 in the second group.
\left(-9x-1\right)\left(8x+7\right)
Factor out common term -9x-1 by using distributive property.
-72x^{2}-71x-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-71\right)±\sqrt{\left(-71\right)^{2}-4\left(-72\right)\left(-7\right)}}{2\left(-72\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-71\right)±\sqrt{5041-4\left(-72\right)\left(-7\right)}}{2\left(-72\right)}
Square -71.
x=\frac{-\left(-71\right)±\sqrt{5041+288\left(-7\right)}}{2\left(-72\right)}
Multiply -4 times -72.
x=\frac{-\left(-71\right)±\sqrt{5041-2016}}{2\left(-72\right)}
Multiply 288 times -7.
x=\frac{-\left(-71\right)±\sqrt{3025}}{2\left(-72\right)}
Add 5041 to -2016.
x=\frac{-\left(-71\right)±55}{2\left(-72\right)}
Take the square root of 3025.
x=\frac{71±55}{2\left(-72\right)}
The opposite of -71 is 71.
x=\frac{71±55}{-144}
Multiply 2 times -72.
x=\frac{126}{-144}
Now solve the equation x=\frac{71±55}{-144} when ± is plus. Add 71 to 55.
x=-\frac{7}{8}
Reduce the fraction \frac{126}{-144} to lowest terms by extracting and canceling out 18.
x=\frac{16}{-144}
Now solve the equation x=\frac{71±55}{-144} when ± is minus. Subtract 55 from 71.
x=-\frac{1}{9}
Reduce the fraction \frac{16}{-144} to lowest terms by extracting and canceling out 16.
-72x^{2}-71x-7=-72\left(x-\left(-\frac{7}{8}\right)\right)\left(x-\left(-\frac{1}{9}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{7}{8} for x_{1} and -\frac{1}{9} for x_{2}.
-72x^{2}-71x-7=-72\left(x+\frac{7}{8}\right)\left(x+\frac{1}{9}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-72x^{2}-71x-7=-72\times \frac{-8x-7}{-8}\left(x+\frac{1}{9}\right)
Add \frac{7}{8} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-72x^{2}-71x-7=-72\times \frac{-8x-7}{-8}\times \frac{-9x-1}{-9}
Add \frac{1}{9} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-72x^{2}-71x-7=-72\times \frac{\left(-8x-7\right)\left(-9x-1\right)}{-8\left(-9\right)}
Multiply \frac{-8x-7}{-8} times \frac{-9x-1}{-9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-72x^{2}-71x-7=-72\times \frac{\left(-8x-7\right)\left(-9x-1\right)}{72}
Multiply -8 times -9.
-72x^{2}-71x-7=-\left(-8x-7\right)\left(-9x-1\right)
Cancel out 72, the greatest common factor in -72 and 72.