Evaluate
-6
Factor
-6
Share
Copied to clipboard
-7-\frac{3+1}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Multiply 1 and 3 to get 3.
-7-\frac{4}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Add 3 and 1 to get 4.
-\frac{21}{3}-\frac{4}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Convert -7 to fraction -\frac{21}{3}.
\frac{-21-4}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Since -\frac{21}{3} and \frac{4}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{25}{3}-\left(-7\right)-\frac{4\times 3+2}{3}
Subtract 4 from -21 to get -25.
-\frac{25}{3}+7-\frac{4\times 3+2}{3}
The opposite of -7 is 7.
-\frac{25}{3}+\frac{21}{3}-\frac{4\times 3+2}{3}
Convert 7 to fraction \frac{21}{3}.
\frac{-25+21}{3}-\frac{4\times 3+2}{3}
Since -\frac{25}{3} and \frac{21}{3} have the same denominator, add them by adding their numerators.
-\frac{4}{3}-\frac{4\times 3+2}{3}
Add -25 and 21 to get -4.
-\frac{4}{3}-\frac{12+2}{3}
Multiply 4 and 3 to get 12.
-\frac{4}{3}-\frac{14}{3}
Add 12 and 2 to get 14.
\frac{-4-14}{3}
Since -\frac{4}{3} and \frac{14}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-18}{3}
Subtract 14 from -4 to get -18.
-6
Divide -18 by 3 to get -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}