Solve for x
x=\frac{5\sqrt{2}-1}{7}\approx 0.867295402
x=\frac{-5\sqrt{2}-1}{7}\approx -1.153009687
Graph
Share
Copied to clipboard
-7x^{2}-2x=-7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-7x^{2}-2x-\left(-7\right)=-7-\left(-7\right)
Add 7 to both sides of the equation.
-7x^{2}-2x-\left(-7\right)=0
Subtracting -7 from itself leaves 0.
-7x^{2}-2x+7=0
Subtract -7 from 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-7\right)\times 7}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, -2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-7\right)\times 7}}{2\left(-7\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+28\times 7}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-\left(-2\right)±\sqrt{4+196}}{2\left(-7\right)}
Multiply 28 times 7.
x=\frac{-\left(-2\right)±\sqrt{200}}{2\left(-7\right)}
Add 4 to 196.
x=\frac{-\left(-2\right)±10\sqrt{2}}{2\left(-7\right)}
Take the square root of 200.
x=\frac{2±10\sqrt{2}}{2\left(-7\right)}
The opposite of -2 is 2.
x=\frac{2±10\sqrt{2}}{-14}
Multiply 2 times -7.
x=\frac{10\sqrt{2}+2}{-14}
Now solve the equation x=\frac{2±10\sqrt{2}}{-14} when ± is plus. Add 2 to 10\sqrt{2}.
x=\frac{-5\sqrt{2}-1}{7}
Divide 2+10\sqrt{2} by -14.
x=\frac{2-10\sqrt{2}}{-14}
Now solve the equation x=\frac{2±10\sqrt{2}}{-14} when ± is minus. Subtract 10\sqrt{2} from 2.
x=\frac{5\sqrt{2}-1}{7}
Divide 2-10\sqrt{2} by -14.
x=\frac{-5\sqrt{2}-1}{7} x=\frac{5\sqrt{2}-1}{7}
The equation is now solved.
-7x^{2}-2x=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-7x^{2}-2x}{-7}=-\frac{7}{-7}
Divide both sides by -7.
x^{2}+\left(-\frac{2}{-7}\right)x=-\frac{7}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}+\frac{2}{7}x=-\frac{7}{-7}
Divide -2 by -7.
x^{2}+\frac{2}{7}x=1
Divide -7 by -7.
x^{2}+\frac{2}{7}x+\left(\frac{1}{7}\right)^{2}=1+\left(\frac{1}{7}\right)^{2}
Divide \frac{2}{7}, the coefficient of the x term, by 2 to get \frac{1}{7}. Then add the square of \frac{1}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{7}x+\frac{1}{49}=1+\frac{1}{49}
Square \frac{1}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{7}x+\frac{1}{49}=\frac{50}{49}
Add 1 to \frac{1}{49}.
\left(x+\frac{1}{7}\right)^{2}=\frac{50}{49}
Factor x^{2}+\frac{2}{7}x+\frac{1}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{7}\right)^{2}}=\sqrt{\frac{50}{49}}
Take the square root of both sides of the equation.
x+\frac{1}{7}=\frac{5\sqrt{2}}{7} x+\frac{1}{7}=-\frac{5\sqrt{2}}{7}
Simplify.
x=\frac{5\sqrt{2}-1}{7} x=\frac{-5\sqrt{2}-1}{7}
Subtract \frac{1}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}