Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-7x^{2}+28x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-28±\sqrt{28^{2}-4\left(-7\right)\left(-10\right)}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{784-4\left(-7\right)\left(-10\right)}}{2\left(-7\right)}
Square 28.
x=\frac{-28±\sqrt{784+28\left(-10\right)}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-28±\sqrt{784-280}}{2\left(-7\right)}
Multiply 28 times -10.
x=\frac{-28±\sqrt{504}}{2\left(-7\right)}
Add 784 to -280.
x=\frac{-28±6\sqrt{14}}{2\left(-7\right)}
Take the square root of 504.
x=\frac{-28±6\sqrt{14}}{-14}
Multiply 2 times -7.
x=\frac{6\sqrt{14}-28}{-14}
Now solve the equation x=\frac{-28±6\sqrt{14}}{-14} when ± is plus. Add -28 to 6\sqrt{14}.
x=-\frac{3\sqrt{14}}{7}+2
Divide -28+6\sqrt{14} by -14.
x=\frac{-6\sqrt{14}-28}{-14}
Now solve the equation x=\frac{-28±6\sqrt{14}}{-14} when ± is minus. Subtract 6\sqrt{14} from -28.
x=\frac{3\sqrt{14}}{7}+2
Divide -28-6\sqrt{14} by -14.
-7x^{2}+28x-10=-7\left(x-\left(-\frac{3\sqrt{14}}{7}+2\right)\right)\left(x-\left(\frac{3\sqrt{14}}{7}+2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2-\frac{3\sqrt{14}}{7} for x_{1} and 2+\frac{3\sqrt{14}}{7} for x_{2}.