Solve for x
x=3
x=-\frac{1}{7}\approx -0.142857143
Graph
Share
Copied to clipboard
a+b=20 ab=-7\times 3=-21
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -7x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,21 -3,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -21.
-1+21=20 -3+7=4
Calculate the sum for each pair.
a=21 b=-1
The solution is the pair that gives sum 20.
\left(-7x^{2}+21x\right)+\left(-x+3\right)
Rewrite -7x^{2}+20x+3 as \left(-7x^{2}+21x\right)+\left(-x+3\right).
7x\left(-x+3\right)-x+3
Factor out 7x in -7x^{2}+21x.
\left(-x+3\right)\left(7x+1\right)
Factor out common term -x+3 by using distributive property.
x=3 x=-\frac{1}{7}
To find equation solutions, solve -x+3=0 and 7x+1=0.
-7x^{2}+20x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\left(-7\right)\times 3}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 20 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\left(-7\right)\times 3}}{2\left(-7\right)}
Square 20.
x=\frac{-20±\sqrt{400+28\times 3}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-20±\sqrt{400+84}}{2\left(-7\right)}
Multiply 28 times 3.
x=\frac{-20±\sqrt{484}}{2\left(-7\right)}
Add 400 to 84.
x=\frac{-20±22}{2\left(-7\right)}
Take the square root of 484.
x=\frac{-20±22}{-14}
Multiply 2 times -7.
x=\frac{2}{-14}
Now solve the equation x=\frac{-20±22}{-14} when ± is plus. Add -20 to 22.
x=-\frac{1}{7}
Reduce the fraction \frac{2}{-14} to lowest terms by extracting and canceling out 2.
x=-\frac{42}{-14}
Now solve the equation x=\frac{-20±22}{-14} when ± is minus. Subtract 22 from -20.
x=3
Divide -42 by -14.
x=-\frac{1}{7} x=3
The equation is now solved.
-7x^{2}+20x+3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-7x^{2}+20x+3-3=-3
Subtract 3 from both sides of the equation.
-7x^{2}+20x=-3
Subtracting 3 from itself leaves 0.
\frac{-7x^{2}+20x}{-7}=-\frac{3}{-7}
Divide both sides by -7.
x^{2}+\frac{20}{-7}x=-\frac{3}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{20}{7}x=-\frac{3}{-7}
Divide 20 by -7.
x^{2}-\frac{20}{7}x=\frac{3}{7}
Divide -3 by -7.
x^{2}-\frac{20}{7}x+\left(-\frac{10}{7}\right)^{2}=\frac{3}{7}+\left(-\frac{10}{7}\right)^{2}
Divide -\frac{20}{7}, the coefficient of the x term, by 2 to get -\frac{10}{7}. Then add the square of -\frac{10}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{7}x+\frac{100}{49}=\frac{3}{7}+\frac{100}{49}
Square -\frac{10}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{7}x+\frac{100}{49}=\frac{121}{49}
Add \frac{3}{7} to \frac{100}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{7}\right)^{2}=\frac{121}{49}
Factor x^{2}-\frac{20}{7}x+\frac{100}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{7}\right)^{2}}=\sqrt{\frac{121}{49}}
Take the square root of both sides of the equation.
x-\frac{10}{7}=\frac{11}{7} x-\frac{10}{7}=-\frac{11}{7}
Simplify.
x=3 x=-\frac{1}{7}
Add \frac{10}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}