Solve for x
x=\left(\frac{1}{3}-\frac{5}{3}i\right)y-\frac{4}{3}i
Solve for y
y=\left(\frac{3}{26}+\frac{15}{26}i\right)x+\left(-\frac{10}{13}+\frac{2}{13}i\right)
Share
Copied to clipboard
-7x-4i+y=-5i^{19}y-4x
Calculate i to the power of 8 and get 1.
-7x-4i+y=-5\left(-i\right)y-4x
Calculate i to the power of 19 and get -i.
-7x-4i+y=5iy-4x
Multiply -5 and -i to get 5i.
-7x-4i+y+4x=5iy
Add 4x to both sides.
-3x-4i+y=5iy
Combine -7x and 4x to get -3x.
-3x+y=5iy+4i
Add 4i to both sides.
-3x=5iy+4i-y
Subtract y from both sides.
-3x=\left(-1+5i\right)y+4i
Combine 5iy and -y to get \left(-1+5i\right)y.
\frac{-3x}{-3}=\frac{\left(-1+5i\right)y+4i}{-3}
Divide both sides by -3.
x=\frac{\left(-1+5i\right)y+4i}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\left(\frac{1}{3}-\frac{5}{3}i\right)y-\frac{4}{3}i
Divide \left(-1+5i\right)y+4i by -3.
-7x-4i+y=-5i^{19}y-4x
Calculate i to the power of 8 and get 1.
-7x-4i+y=-5\left(-i\right)y-4x
Calculate i to the power of 19 and get -i.
-7x-4i+y=5iy-4x
Multiply -5 and -i to get 5i.
-7x-4i+y-5iy=-4x
Subtract 5iy from both sides.
-7x-4i+\left(1-5i\right)y=-4x
Combine y and -5iy to get \left(1-5i\right)y.
-4i+\left(1-5i\right)y=-4x+7x
Add 7x to both sides.
-4i+\left(1-5i\right)y=3x
Combine -4x and 7x to get 3x.
\left(1-5i\right)y=3x+4i
Add 4i to both sides.
\frac{\left(1-5i\right)y}{1-5i}=\frac{3x+4i}{1-5i}
Divide both sides by 1-5i.
y=\frac{3x+4i}{1-5i}
Dividing by 1-5i undoes the multiplication by 1-5i.
y=\left(\frac{3}{26}+\frac{15}{26}i\right)x+\left(-\frac{10}{13}+\frac{2}{13}i\right)
Divide 3x+4i by 1-5i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}