Solve for x
x = \frac{145404}{1481} = 98\frac{266}{1481} \approx 98.179608373
Graph
Share
Copied to clipboard
-627.2x+13484.8=1150\left(x-140\right)
Use the distributive property to multiply -627.2 by x-21.5.
-627.2x+13484.8=1150x-161000
Use the distributive property to multiply 1150 by x-140.
-627.2x+13484.8-1150x=-161000
Subtract 1150x from both sides.
-1777.2x+13484.8=-161000
Combine -627.2x and -1150x to get -1777.2x.
-1777.2x=-161000-13484.8
Subtract 13484.8 from both sides.
-1777.2x=-174484.8
Subtract 13484.8 from -161000 to get -174484.8.
x=\frac{-174484.8}{-1777.2}
Divide both sides by -1777.2.
x=\frac{-1744848}{-17772}
Expand \frac{-174484.8}{-1777.2} by multiplying both numerator and the denominator by 10.
x=\frac{145404}{1481}
Reduce the fraction \frac{-1744848}{-17772} to lowest terms by extracting and canceling out -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}