Solve for x
x = \frac{49}{9} = 5\frac{4}{9} \approx 5.444444444
Graph
Share
Copied to clipboard
-24\left(x-5\right)=4\left(x-5\right)\times \frac{3}{4}-4\left(5-2\right)
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-5\right), the least common multiple of 4,x-5.
-24x+120=4\left(x-5\right)\times \frac{3}{4}-4\left(5-2\right)
Use the distributive property to multiply -24 by x-5.
-24x+120=3\left(x-5\right)-4\left(5-2\right)
Multiply 4 and \frac{3}{4} to get 3.
-24x+120=3x-15-4\left(5-2\right)
Use the distributive property to multiply 3 by x-5.
-24x+120=3x-15-4\times 3
Subtract 2 from 5 to get 3.
-24x+120=3x-15-12
Multiply -4 and 3 to get -12.
-24x+120=3x-27
Subtract 12 from -15 to get -27.
-24x+120-3x=-27
Subtract 3x from both sides.
-27x+120=-27
Combine -24x and -3x to get -27x.
-27x=-27-120
Subtract 120 from both sides.
-27x=-147
Subtract 120 from -27 to get -147.
x=\frac{-147}{-27}
Divide both sides by -27.
x=\frac{49}{9}
Reduce the fraction \frac{-147}{-27} to lowest terms by extracting and canceling out -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}