Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-10+5x+x^{2}=2
Subtract 4 from -6 to get -10.
-10+5x+x^{2}-2=0
Subtract 2 from both sides.
-12+5x+x^{2}=0
Subtract 2 from -10 to get -12.
x^{2}+5x-12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-12\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 5 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-12\right)}}{2}
Square 5.
x=\frac{-5±\sqrt{25+48}}{2}
Multiply -4 times -12.
x=\frac{-5±\sqrt{73}}{2}
Add 25 to 48.
x=\frac{\sqrt{73}-5}{2}
Now solve the equation x=\frac{-5±\sqrt{73}}{2} when ± is plus. Add -5 to \sqrt{73}.
x=\frac{-\sqrt{73}-5}{2}
Now solve the equation x=\frac{-5±\sqrt{73}}{2} when ± is minus. Subtract \sqrt{73} from -5.
x=\frac{\sqrt{73}-5}{2} x=\frac{-\sqrt{73}-5}{2}
The equation is now solved.
-10+5x+x^{2}=2
Subtract 4 from -6 to get -10.
5x+x^{2}=2+10
Add 10 to both sides.
5x+x^{2}=12
Add 2 and 10 to get 12.
x^{2}+5x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=12+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=12+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{73}{4}
Add 12 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{73}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{73}}{2} x+\frac{5}{2}=-\frac{\sqrt{73}}{2}
Simplify.
x=\frac{\sqrt{73}-5}{2} x=\frac{-\sqrt{73}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.