Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}-30x+450=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\left(-6\right)\times 450}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, -30 for b, and 450 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\left(-6\right)\times 450}}{2\left(-6\right)}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900+24\times 450}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-\left(-30\right)±\sqrt{900+10800}}{2\left(-6\right)}
Multiply 24 times 450.
x=\frac{-\left(-30\right)±\sqrt{11700}}{2\left(-6\right)}
Add 900 to 10800.
x=\frac{-\left(-30\right)±30\sqrt{13}}{2\left(-6\right)}
Take the square root of 11700.
x=\frac{30±30\sqrt{13}}{2\left(-6\right)}
The opposite of -30 is 30.
x=\frac{30±30\sqrt{13}}{-12}
Multiply 2 times -6.
x=\frac{30\sqrt{13}+30}{-12}
Now solve the equation x=\frac{30±30\sqrt{13}}{-12} when ± is plus. Add 30 to 30\sqrt{13}.
x=\frac{-5\sqrt{13}-5}{2}
Divide 30+30\sqrt{13} by -12.
x=\frac{30-30\sqrt{13}}{-12}
Now solve the equation x=\frac{30±30\sqrt{13}}{-12} when ± is minus. Subtract 30\sqrt{13} from 30.
x=\frac{5\sqrt{13}-5}{2}
Divide 30-30\sqrt{13} by -12.
x=\frac{-5\sqrt{13}-5}{2} x=\frac{5\sqrt{13}-5}{2}
The equation is now solved.
-6x^{2}-30x+450=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-6x^{2}-30x+450-450=-450
Subtract 450 from both sides of the equation.
-6x^{2}-30x=-450
Subtracting 450 from itself leaves 0.
\frac{-6x^{2}-30x}{-6}=-\frac{450}{-6}
Divide both sides by -6.
x^{2}+\left(-\frac{30}{-6}\right)x=-\frac{450}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}+5x=-\frac{450}{-6}
Divide -30 by -6.
x^{2}+5x=75
Divide -450 by -6.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=75+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=75+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{325}{4}
Add 75 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{325}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{325}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{5\sqrt{13}}{2} x+\frac{5}{2}=-\frac{5\sqrt{13}}{2}
Simplify.
x=\frac{5\sqrt{13}-5}{2} x=\frac{-5\sqrt{13}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.