Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}+33x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-33±\sqrt{33^{2}-4\left(-6\right)\times 15}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{1089-4\left(-6\right)\times 15}}{2\left(-6\right)}
Square 33.
x=\frac{-33±\sqrt{1089+24\times 15}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-33±\sqrt{1089+360}}{2\left(-6\right)}
Multiply 24 times 15.
x=\frac{-33±\sqrt{1449}}{2\left(-6\right)}
Add 1089 to 360.
x=\frac{-33±3\sqrt{161}}{2\left(-6\right)}
Take the square root of 1449.
x=\frac{-33±3\sqrt{161}}{-12}
Multiply 2 times -6.
x=\frac{3\sqrt{161}-33}{-12}
Now solve the equation x=\frac{-33±3\sqrt{161}}{-12} when ± is plus. Add -33 to 3\sqrt{161}.
x=\frac{11-\sqrt{161}}{4}
Divide -33+3\sqrt{161} by -12.
x=\frac{-3\sqrt{161}-33}{-12}
Now solve the equation x=\frac{-33±3\sqrt{161}}{-12} when ± is minus. Subtract 3\sqrt{161} from -33.
x=\frac{\sqrt{161}+11}{4}
Divide -33-3\sqrt{161} by -12.
-6x^{2}+33x+15=-6\left(x-\frac{11-\sqrt{161}}{4}\right)\left(x-\frac{\sqrt{161}+11}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11-\sqrt{161}}{4} for x_{1} and \frac{11+\sqrt{161}}{4} for x_{2}.