Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-6x^{2}+10x-1=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-6x^{2}+10x-1-9=9-9
Subtract 9 from both sides of the equation.
-6x^{2}+10x-1-9=0
Subtracting 9 from itself leaves 0.
-6x^{2}+10x-10=0
Subtract 9 from -1.
x=\frac{-10±\sqrt{10^{2}-4\left(-6\right)\left(-10\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 10 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-6\right)\left(-10\right)}}{2\left(-6\right)}
Square 10.
x=\frac{-10±\sqrt{100+24\left(-10\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-10±\sqrt{100-240}}{2\left(-6\right)}
Multiply 24 times -10.
x=\frac{-10±\sqrt{-140}}{2\left(-6\right)}
Add 100 to -240.
x=\frac{-10±2\sqrt{35}i}{2\left(-6\right)}
Take the square root of -140.
x=\frac{-10±2\sqrt{35}i}{-12}
Multiply 2 times -6.
x=\frac{-10+2\sqrt{35}i}{-12}
Now solve the equation x=\frac{-10±2\sqrt{35}i}{-12} when ± is plus. Add -10 to 2i\sqrt{35}.
x=\frac{-\sqrt{35}i+5}{6}
Divide -10+2i\sqrt{35} by -12.
x=\frac{-2\sqrt{35}i-10}{-12}
Now solve the equation x=\frac{-10±2\sqrt{35}i}{-12} when ± is minus. Subtract 2i\sqrt{35} from -10.
x=\frac{5+\sqrt{35}i}{6}
Divide -10-2i\sqrt{35} by -12.
x=\frac{-\sqrt{35}i+5}{6} x=\frac{5+\sqrt{35}i}{6}
The equation is now solved.
-6x^{2}+10x-1=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-6x^{2}+10x-1-\left(-1\right)=9-\left(-1\right)
Add 1 to both sides of the equation.
-6x^{2}+10x=9-\left(-1\right)
Subtracting -1 from itself leaves 0.
-6x^{2}+10x=10
Subtract -1 from 9.
\frac{-6x^{2}+10x}{-6}=\frac{10}{-6}
Divide both sides by -6.
x^{2}+\frac{10}{-6}x=\frac{10}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{5}{3}x=\frac{10}{-6}
Reduce the fraction \frac{10}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{3}x=-\frac{5}{3}
Reduce the fraction \frac{10}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{5}{3}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{5}{3}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{35}{36}
Add -\frac{5}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{6}\right)^{2}=-\frac{35}{36}
Factor x^{2}-\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{35}{36}}
Take the square root of both sides of the equation.
x-\frac{5}{6}=\frac{\sqrt{35}i}{6} x-\frac{5}{6}=-\frac{\sqrt{35}i}{6}
Simplify.
x=\frac{5+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i+5}{6}
Add \frac{5}{6} to both sides of the equation.