Factor
-\left(2k+3\right)\left(3k+2\right)
Evaluate
-6k^{2}-13k-6
Share
Copied to clipboard
a+b=-13 ab=-6\left(-6\right)=36
Factor the expression by grouping. First, the expression needs to be rewritten as -6k^{2}+ak+bk-6. To find a and b, set up a system to be solved.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calculate the sum for each pair.
a=-4 b=-9
The solution is the pair that gives sum -13.
\left(-6k^{2}-4k\right)+\left(-9k-6\right)
Rewrite -6k^{2}-13k-6 as \left(-6k^{2}-4k\right)+\left(-9k-6\right).
2k\left(-3k-2\right)+3\left(-3k-2\right)
Factor out 2k in the first and 3 in the second group.
\left(-3k-2\right)\left(2k+3\right)
Factor out common term -3k-2 by using distributive property.
-6k^{2}-13k-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-6\right)\left(-6\right)}}{2\left(-6\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-13\right)±\sqrt{169-4\left(-6\right)\left(-6\right)}}{2\left(-6\right)}
Square -13.
k=\frac{-\left(-13\right)±\sqrt{169+24\left(-6\right)}}{2\left(-6\right)}
Multiply -4 times -6.
k=\frac{-\left(-13\right)±\sqrt{169-144}}{2\left(-6\right)}
Multiply 24 times -6.
k=\frac{-\left(-13\right)±\sqrt{25}}{2\left(-6\right)}
Add 169 to -144.
k=\frac{-\left(-13\right)±5}{2\left(-6\right)}
Take the square root of 25.
k=\frac{13±5}{2\left(-6\right)}
The opposite of -13 is 13.
k=\frac{13±5}{-12}
Multiply 2 times -6.
k=\frac{18}{-12}
Now solve the equation k=\frac{13±5}{-12} when ± is plus. Add 13 to 5.
k=-\frac{3}{2}
Reduce the fraction \frac{18}{-12} to lowest terms by extracting and canceling out 6.
k=\frac{8}{-12}
Now solve the equation k=\frac{13±5}{-12} when ± is minus. Subtract 5 from 13.
k=-\frac{2}{3}
Reduce the fraction \frac{8}{-12} to lowest terms by extracting and canceling out 4.
-6k^{2}-13k-6=-6\left(k-\left(-\frac{3}{2}\right)\right)\left(k-\left(-\frac{2}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{3}{2} for x_{1} and -\frac{2}{3} for x_{2}.
-6k^{2}-13k-6=-6\left(k+\frac{3}{2}\right)\left(k+\frac{2}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-6k^{2}-13k-6=-6\times \frac{-2k-3}{-2}\left(k+\frac{2}{3}\right)
Add \frac{3}{2} to k by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6k^{2}-13k-6=-6\times \frac{-2k-3}{-2}\times \frac{-3k-2}{-3}
Add \frac{2}{3} to k by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-6k^{2}-13k-6=-6\times \frac{\left(-2k-3\right)\left(-3k-2\right)}{-2\left(-3\right)}
Multiply \frac{-2k-3}{-2} times \frac{-3k-2}{-3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-6k^{2}-13k-6=-6\times \frac{\left(-2k-3\right)\left(-3k-2\right)}{6}
Multiply -2 times -3.
-6k^{2}-13k-6=-\left(-2k-3\right)\left(-3k-2\right)
Cancel out 6, the greatest common factor in -6 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}