Evaluate
\frac{21c}{2}+6a-48b
Expand
\frac{21c}{2}+6a-48b
Share
Copied to clipboard
-6\left(-a+8b-\frac{7c}{4}\right)
Express 7\times \frac{c}{4} as a single fraction.
-6\left(\frac{4\left(-a+8b\right)}{4}-\frac{7c}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+8b times \frac{4}{4}.
-6\times \frac{4\left(-a+8b\right)-7c}{4}
Since \frac{4\left(-a+8b\right)}{4} and \frac{7c}{4} have the same denominator, subtract them by subtracting their numerators.
-6\times \frac{-4a+32b-7c}{4}
Do the multiplications in 4\left(-a+8b\right)-7c.
\frac{-6\left(-4a+32b-7c\right)}{4}
Express -6\times \frac{-4a+32b-7c}{4} as a single fraction.
-\frac{3}{2}\left(-4a+32b-7c\right)
Divide -6\left(-4a+32b-7c\right) by 4 to get -\frac{3}{2}\left(-4a+32b-7c\right).
-\frac{3}{2}\left(-4\right)a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Use the distributive property to multiply -\frac{3}{2} by -4a+32b-7c.
\frac{-3\left(-4\right)}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Express -\frac{3}{2}\left(-4\right) as a single fraction.
\frac{12}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Multiply -3 and -4 to get 12.
6a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Divide 12 by 2 to get 6.
6a+\frac{-3\times 32}{2}b-\frac{3}{2}\left(-7\right)c
Express -\frac{3}{2}\times 32 as a single fraction.
6a+\frac{-96}{2}b-\frac{3}{2}\left(-7\right)c
Multiply -3 and 32 to get -96.
6a-48b-\frac{3}{2}\left(-7\right)c
Divide -96 by 2 to get -48.
6a-48b+\frac{-3\left(-7\right)}{2}c
Express -\frac{3}{2}\left(-7\right) as a single fraction.
6a-48b+\frac{21}{2}c
Multiply -3 and -7 to get 21.
-6\left(-a+8b-\frac{7c}{4}\right)
Express 7\times \frac{c}{4} as a single fraction.
-6\left(\frac{4\left(-a+8b\right)}{4}-\frac{7c}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -a+8b times \frac{4}{4}.
-6\times \frac{4\left(-a+8b\right)-7c}{4}
Since \frac{4\left(-a+8b\right)}{4} and \frac{7c}{4} have the same denominator, subtract them by subtracting their numerators.
-6\times \frac{-4a+32b-7c}{4}
Do the multiplications in 4\left(-a+8b\right)-7c.
\frac{-6\left(-4a+32b-7c\right)}{4}
Express -6\times \frac{-4a+32b-7c}{4} as a single fraction.
-\frac{3}{2}\left(-4a+32b-7c\right)
Divide -6\left(-4a+32b-7c\right) by 4 to get -\frac{3}{2}\left(-4a+32b-7c\right).
-\frac{3}{2}\left(-4\right)a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Use the distributive property to multiply -\frac{3}{2} by -4a+32b-7c.
\frac{-3\left(-4\right)}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Express -\frac{3}{2}\left(-4\right) as a single fraction.
\frac{12}{2}a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Multiply -3 and -4 to get 12.
6a-\frac{3}{2}\times 32b-\frac{3}{2}\left(-7\right)c
Divide 12 by 2 to get 6.
6a+\frac{-3\times 32}{2}b-\frac{3}{2}\left(-7\right)c
Express -\frac{3}{2}\times 32 as a single fraction.
6a+\frac{-96}{2}b-\frac{3}{2}\left(-7\right)c
Multiply -3 and 32 to get -96.
6a-48b-\frac{3}{2}\left(-7\right)c
Divide -96 by 2 to get -48.
6a-48b+\frac{-3\left(-7\right)}{2}c
Express -\frac{3}{2}\left(-7\right) as a single fraction.
6a-48b+\frac{21}{2}c
Multiply -3 and -7 to get 21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}