Solve for x
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}\approx 0.0000898
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}\approx 0.0000002
Graph
Share
Copied to clipboard
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Multiply 9 and \frac{1}{1000000} to get \frac{9}{1000000}.
x=\frac{-45±\sqrt{45^{2}-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -500000 for a, 45 for b, and -\frac{9}{1000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Square 45.
x=\frac{-45±\sqrt{2025+2000000\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Multiply -4 times -500000.
x=\frac{-45±\sqrt{2025-18}}{2\left(-500000\right)}
Multiply 2000000 times -\frac{9}{1000000}.
x=\frac{-45±\sqrt{2007}}{2\left(-500000\right)}
Add 2025 to -18.
x=\frac{-45±3\sqrt{223}}{2\left(-500000\right)}
Take the square root of 2007.
x=\frac{-45±3\sqrt{223}}{-1000000}
Multiply 2 times -500000.
x=\frac{3\sqrt{223}-45}{-1000000}
Now solve the equation x=\frac{-45±3\sqrt{223}}{-1000000} when ± is plus. Add -45 to 3\sqrt{223}.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Divide -45+3\sqrt{223} by -1000000.
x=\frac{-3\sqrt{223}-45}{-1000000}
Now solve the equation x=\frac{-45±3\sqrt{223}}{-1000000} when ± is minus. Subtract 3\sqrt{223} from -45.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Divide -45-3\sqrt{223} by -1000000.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
The equation is now solved.
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Multiply 9 and \frac{1}{1000000} to get \frac{9}{1000000}.
-500000x^{2}+45x=\frac{9}{1000000}
Add \frac{9}{1000000} to both sides. Anything plus zero gives itself.
\frac{-500000x^{2}+45x}{-500000}=\frac{\frac{9}{1000000}}{-500000}
Divide both sides by -500000.
x^{2}+\frac{45}{-500000}x=\frac{\frac{9}{1000000}}{-500000}
Dividing by -500000 undoes the multiplication by -500000.
x^{2}-\frac{9}{100000}x=\frac{\frac{9}{1000000}}{-500000}
Reduce the fraction \frac{45}{-500000} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{9}{100000}x=-\frac{9}{500000000000}
Divide \frac{9}{1000000} by -500000.
x^{2}-\frac{9}{100000}x+\left(-\frac{9}{200000}\right)^{2}=-\frac{9}{500000000000}+\left(-\frac{9}{200000}\right)^{2}
Divide -\frac{9}{100000}, the coefficient of the x term, by 2 to get -\frac{9}{200000}. Then add the square of -\frac{9}{200000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=-\frac{9}{500000000000}+\frac{81}{40000000000}
Square -\frac{9}{200000} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=\frac{2007}{1000000000000}
Add -\frac{9}{500000000000} to \frac{81}{40000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{200000}\right)^{2}=\frac{2007}{1000000000000}
Factor x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{200000}\right)^{2}}=\sqrt{\frac{2007}{1000000000000}}
Take the square root of both sides of the equation.
x-\frac{9}{200000}=\frac{3\sqrt{223}}{1000000} x-\frac{9}{200000}=-\frac{3\sqrt{223}}{1000000}
Simplify.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Add \frac{9}{200000} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}