Solve for x
x=0.000003
x=0.000006
Graph
Share
Copied to clipboard
-500000x^{2}+4.5x-9\times \frac{1}{1000000}=0
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
-500000x^{2}+4.5x-\frac{9}{1000000}=0
Multiply 9 and \frac{1}{1000000} to get \frac{9}{1000000}.
x=\frac{-4.5±\sqrt{4.5^{2}-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -500000 for a, 4.5 for b, and -\frac{9}{1000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4.5±\sqrt{20.25-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Square 4.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-4.5±\sqrt{20.25+2000000\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Multiply -4 times -500000.
x=\frac{-4.5±\sqrt{20.25-18}}{2\left(-500000\right)}
Multiply 2000000 times -\frac{9}{1000000}.
x=\frac{-4.5±\sqrt{2.25}}{2\left(-500000\right)}
Add 20.25 to -18.
x=\frac{-4.5±\frac{3}{2}}{2\left(-500000\right)}
Take the square root of 2.25.
x=\frac{-4.5±\frac{3}{2}}{-1000000}
Multiply 2 times -500000.
x=-\frac{3}{-1000000}
Now solve the equation x=\frac{-4.5±\frac{3}{2}}{-1000000} when ± is plus. Add -4.5 to \frac{3}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{1000000}
Divide -3 by -1000000.
x=-\frac{6}{-1000000}
Now solve the equation x=\frac{-4.5±\frac{3}{2}}{-1000000} when ± is minus. Subtract \frac{3}{2} from -4.5 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{500000}
Reduce the fraction \frac{-6}{-1000000} to lowest terms by extracting and canceling out 2.
x=\frac{3}{1000000} x=\frac{3}{500000}
The equation is now solved.
-500000x^{2}+4.5x-9\times \frac{1}{1000000}=0
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
-500000x^{2}+4.5x-\frac{9}{1000000}=0
Multiply 9 and \frac{1}{1000000} to get \frac{9}{1000000}.
-500000x^{2}+4.5x=\frac{9}{1000000}
Add \frac{9}{1000000} to both sides. Anything plus zero gives itself.
\frac{-500000x^{2}+4.5x}{-500000}=\frac{\frac{9}{1000000}}{-500000}
Divide both sides by -500000.
x^{2}+\frac{4.5}{-500000}x=\frac{\frac{9}{1000000}}{-500000}
Dividing by -500000 undoes the multiplication by -500000.
x^{2}-0.000009x=\frac{\frac{9}{1000000}}{-500000}
Divide 4.5 by -500000.
x^{2}-0.000009x=-\frac{9}{500000000000}
Divide \frac{9}{1000000} by -500000.
x^{2}-0.000009x+\left(-0.0000045\right)^{2}=-\frac{9}{500000000000}+\left(-0.0000045\right)^{2}
Divide -0.000009, the coefficient of the x term, by 2 to get -0.0000045. Then add the square of -0.0000045 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.000009x+0.00000000002025=-\frac{9}{500000000000}+0.00000000002025
Square -0.0000045 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.000009x+0.00000000002025=\frac{9}{4000000000000}
Add -\frac{9}{500000000000} to 0.00000000002025 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.0000045\right)^{2}=\frac{9}{4000000000000}
Factor x^{2}-0.000009x+0.00000000002025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.0000045\right)^{2}}=\sqrt{\frac{9}{4000000000000}}
Take the square root of both sides of the equation.
x-0.0000045=\frac{3}{2000000} x-0.0000045=-\frac{3}{2000000}
Simplify.
x=\frac{3}{500000} x=\frac{3}{1000000}
Add 0.0000045 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}