Solve for a
a=\sqrt{1609}+53\approx 93.11234224
a=53-\sqrt{1609}\approx 12.88765776
Share
Copied to clipboard
-500a^{2}+53000a=600000
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-500a^{2}+53000a-600000=600000-600000
Subtract 600000 from both sides of the equation.
-500a^{2}+53000a-600000=0
Subtracting 600000 from itself leaves 0.
a=\frac{-53000±\sqrt{53000^{2}-4\left(-500\right)\left(-600000\right)}}{2\left(-500\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -500 for a, 53000 for b, and -600000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-53000±\sqrt{2809000000-4\left(-500\right)\left(-600000\right)}}{2\left(-500\right)}
Square 53000.
a=\frac{-53000±\sqrt{2809000000+2000\left(-600000\right)}}{2\left(-500\right)}
Multiply -4 times -500.
a=\frac{-53000±\sqrt{2809000000-1200000000}}{2\left(-500\right)}
Multiply 2000 times -600000.
a=\frac{-53000±\sqrt{1609000000}}{2\left(-500\right)}
Add 2809000000 to -1200000000.
a=\frac{-53000±1000\sqrt{1609}}{2\left(-500\right)}
Take the square root of 1609000000.
a=\frac{-53000±1000\sqrt{1609}}{-1000}
Multiply 2 times -500.
a=\frac{1000\sqrt{1609}-53000}{-1000}
Now solve the equation a=\frac{-53000±1000\sqrt{1609}}{-1000} when ± is plus. Add -53000 to 1000\sqrt{1609}.
a=53-\sqrt{1609}
Divide -53000+1000\sqrt{1609} by -1000.
a=\frac{-1000\sqrt{1609}-53000}{-1000}
Now solve the equation a=\frac{-53000±1000\sqrt{1609}}{-1000} when ± is minus. Subtract 1000\sqrt{1609} from -53000.
a=\sqrt{1609}+53
Divide -53000-1000\sqrt{1609} by -1000.
a=53-\sqrt{1609} a=\sqrt{1609}+53
The equation is now solved.
-500a^{2}+53000a=600000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-500a^{2}+53000a}{-500}=\frac{600000}{-500}
Divide both sides by -500.
a^{2}+\frac{53000}{-500}a=\frac{600000}{-500}
Dividing by -500 undoes the multiplication by -500.
a^{2}-106a=\frac{600000}{-500}
Divide 53000 by -500.
a^{2}-106a=-1200
Divide 600000 by -500.
a^{2}-106a+\left(-53\right)^{2}=-1200+\left(-53\right)^{2}
Divide -106, the coefficient of the x term, by 2 to get -53. Then add the square of -53 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-106a+2809=-1200+2809
Square -53.
a^{2}-106a+2809=1609
Add -1200 to 2809.
\left(a-53\right)^{2}=1609
Factor a^{2}-106a+2809. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-53\right)^{2}}=\sqrt{1609}
Take the square root of both sides of the equation.
a-53=\sqrt{1609} a-53=-\sqrt{1609}
Simplify.
a=\sqrt{1609}+53 a=53-\sqrt{1609}
Add 53 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}