Solve for t
t = \frac{\sqrt{35} + 3}{5} \approx 1.783215957
t=\frac{3-\sqrt{35}}{5}\approx -0.583215957
Share
Copied to clipboard
6t-5t^{2}=-5.2
Swap sides so that all variable terms are on the left hand side.
6t-5t^{2}+5.2=0
Add 5.2 to both sides.
-5t^{2}+6t+5.2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-6±\sqrt{6^{2}-4\left(-5\right)\times 5.2}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 6 for b, and 5.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±\sqrt{36-4\left(-5\right)\times 5.2}}{2\left(-5\right)}
Square 6.
t=\frac{-6±\sqrt{36+20\times 5.2}}{2\left(-5\right)}
Multiply -4 times -5.
t=\frac{-6±\sqrt{36+104}}{2\left(-5\right)}
Multiply 20 times 5.2.
t=\frac{-6±\sqrt{140}}{2\left(-5\right)}
Add 36 to 104.
t=\frac{-6±2\sqrt{35}}{2\left(-5\right)}
Take the square root of 140.
t=\frac{-6±2\sqrt{35}}{-10}
Multiply 2 times -5.
t=\frac{2\sqrt{35}-6}{-10}
Now solve the equation t=\frac{-6±2\sqrt{35}}{-10} when ± is plus. Add -6 to 2\sqrt{35}.
t=\frac{3-\sqrt{35}}{5}
Divide -6+2\sqrt{35} by -10.
t=\frac{-2\sqrt{35}-6}{-10}
Now solve the equation t=\frac{-6±2\sqrt{35}}{-10} when ± is minus. Subtract 2\sqrt{35} from -6.
t=\frac{\sqrt{35}+3}{5}
Divide -6-2\sqrt{35} by -10.
t=\frac{3-\sqrt{35}}{5} t=\frac{\sqrt{35}+3}{5}
The equation is now solved.
6t-5t^{2}=-5.2
Swap sides so that all variable terms are on the left hand side.
-5t^{2}+6t=-5.2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5t^{2}+6t}{-5}=-\frac{5.2}{-5}
Divide both sides by -5.
t^{2}+\frac{6}{-5}t=-\frac{5.2}{-5}
Dividing by -5 undoes the multiplication by -5.
t^{2}-\frac{6}{5}t=-\frac{5.2}{-5}
Divide 6 by -5.
t^{2}-\frac{6}{5}t=1.04
Divide -5.2 by -5.
t^{2}-\frac{6}{5}t+\left(-\frac{3}{5}\right)^{2}=1.04+\left(-\frac{3}{5}\right)^{2}
Divide -\frac{6}{5}, the coefficient of the x term, by 2 to get -\frac{3}{5}. Then add the square of -\frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{6}{5}t+\frac{9}{25}=\frac{26+9}{25}
Square -\frac{3}{5} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{6}{5}t+\frac{9}{25}=\frac{7}{5}
Add 1.04 to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{3}{5}\right)^{2}=\frac{7}{5}
Factor t^{2}-\frac{6}{5}t+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{3}{5}\right)^{2}}=\sqrt{\frac{7}{5}}
Take the square root of both sides of the equation.
t-\frac{3}{5}=\frac{\sqrt{35}}{5} t-\frac{3}{5}=-\frac{\sqrt{35}}{5}
Simplify.
t=\frac{\sqrt{35}+3}{5} t=\frac{3-\sqrt{35}}{5}
Add \frac{3}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}