Solve for t
t=\frac{\sqrt{1405}}{30}+\frac{5}{6}\approx 2.082777654
t=-\frac{\sqrt{1405}}{30}+\frac{5}{6}\approx -0.416110988
Share
Copied to clipboard
10t-6t^{2}=-5.2
Swap sides so that all variable terms are on the left hand side.
10t-6t^{2}+5.2=0
Add 5.2 to both sides.
-6t^{2}+10t+5.2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-10±\sqrt{10^{2}-4\left(-6\right)\times 5.2}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 10 for b, and 5.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-10±\sqrt{100-4\left(-6\right)\times 5.2}}{2\left(-6\right)}
Square 10.
t=\frac{-10±\sqrt{100+24\times 5.2}}{2\left(-6\right)}
Multiply -4 times -6.
t=\frac{-10±\sqrt{100+124.8}}{2\left(-6\right)}
Multiply 24 times 5.2.
t=\frac{-10±\sqrt{224.8}}{2\left(-6\right)}
Add 100 to 124.8.
t=\frac{-10±\frac{2\sqrt{1405}}{5}}{2\left(-6\right)}
Take the square root of 224.8.
t=\frac{-10±\frac{2\sqrt{1405}}{5}}{-12}
Multiply 2 times -6.
t=\frac{\frac{2\sqrt{1405}}{5}-10}{-12}
Now solve the equation t=\frac{-10±\frac{2\sqrt{1405}}{5}}{-12} when ± is plus. Add -10 to \frac{2\sqrt{1405}}{5}.
t=-\frac{\sqrt{1405}}{30}+\frac{5}{6}
Divide -10+\frac{2\sqrt{1405}}{5} by -12.
t=\frac{-\frac{2\sqrt{1405}}{5}-10}{-12}
Now solve the equation t=\frac{-10±\frac{2\sqrt{1405}}{5}}{-12} when ± is minus. Subtract \frac{2\sqrt{1405}}{5} from -10.
t=\frac{\sqrt{1405}}{30}+\frac{5}{6}
Divide -10-\frac{2\sqrt{1405}}{5} by -12.
t=-\frac{\sqrt{1405}}{30}+\frac{5}{6} t=\frac{\sqrt{1405}}{30}+\frac{5}{6}
The equation is now solved.
10t-6t^{2}=-5.2
Swap sides so that all variable terms are on the left hand side.
-6t^{2}+10t=-5.2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6t^{2}+10t}{-6}=-\frac{5.2}{-6}
Divide both sides by -6.
t^{2}+\frac{10}{-6}t=-\frac{5.2}{-6}
Dividing by -6 undoes the multiplication by -6.
t^{2}-\frac{5}{3}t=-\frac{5.2}{-6}
Reduce the fraction \frac{10}{-6} to lowest terms by extracting and canceling out 2.
t^{2}-\frac{5}{3}t=\frac{13}{15}
Divide -5.2 by -6.
t^{2}-\frac{5}{3}t+\left(-\frac{5}{6}\right)^{2}=\frac{13}{15}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{5}{3}t+\frac{25}{36}=\frac{13}{15}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{5}{3}t+\frac{25}{36}=\frac{281}{180}
Add \frac{13}{15} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{5}{6}\right)^{2}=\frac{281}{180}
Factor t^{2}-\frac{5}{3}t+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{5}{6}\right)^{2}}=\sqrt{\frac{281}{180}}
Take the square root of both sides of the equation.
t-\frac{5}{6}=\frac{\sqrt{1405}}{30} t-\frac{5}{6}=-\frac{\sqrt{1405}}{30}
Simplify.
t=\frac{\sqrt{1405}}{30}+\frac{5}{6} t=-\frac{\sqrt{1405}}{30}+\frac{5}{6}
Add \frac{5}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}