Solve for x
x=\frac{\sqrt{13}-5}{2}\approx -0.697224362
x=\frac{-\sqrt{13}-5}{2}\approx -4.302775638
Graph
Share
Copied to clipboard
-5x^{2}-25x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-5\right)\left(-15\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -25 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\left(-5\right)\left(-15\right)}}{2\left(-5\right)}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625+20\left(-15\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-25\right)±\sqrt{625-300}}{2\left(-5\right)}
Multiply 20 times -15.
x=\frac{-\left(-25\right)±\sqrt{325}}{2\left(-5\right)}
Add 625 to -300.
x=\frac{-\left(-25\right)±5\sqrt{13}}{2\left(-5\right)}
Take the square root of 325.
x=\frac{25±5\sqrt{13}}{2\left(-5\right)}
The opposite of -25 is 25.
x=\frac{25±5\sqrt{13}}{-10}
Multiply 2 times -5.
x=\frac{5\sqrt{13}+25}{-10}
Now solve the equation x=\frac{25±5\sqrt{13}}{-10} when ± is plus. Add 25 to 5\sqrt{13}.
x=\frac{-\sqrt{13}-5}{2}
Divide 25+5\sqrt{13} by -10.
x=\frac{25-5\sqrt{13}}{-10}
Now solve the equation x=\frac{25±5\sqrt{13}}{-10} when ± is minus. Subtract 5\sqrt{13} from 25.
x=\frac{\sqrt{13}-5}{2}
Divide 25-5\sqrt{13} by -10.
x=\frac{-\sqrt{13}-5}{2} x=\frac{\sqrt{13}-5}{2}
The equation is now solved.
-5x^{2}-25x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-5x^{2}-25x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
-5x^{2}-25x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
-5x^{2}-25x=15
Subtract -15 from 0.
\frac{-5x^{2}-25x}{-5}=\frac{15}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{25}{-5}\right)x=\frac{15}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+5x=\frac{15}{-5}
Divide -25 by -5.
x^{2}+5x=-3
Divide 15 by -5.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-3+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=-3+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{13}{4}
Add -3 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{13}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{\sqrt{13}}{2} x+\frac{5}{2}=-\frac{\sqrt{13}}{2}
Simplify.
x=\frac{\sqrt{13}-5}{2} x=\frac{-\sqrt{13}-5}{2}
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}