Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{2}+6x+55=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-5\right)\times 55}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{36-4\left(-5\right)\times 55}}{2\left(-5\right)}
Square 6.
x=\frac{-6±\sqrt{36+20\times 55}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-6±\sqrt{36+1100}}{2\left(-5\right)}
Multiply 20 times 55.
x=\frac{-6±\sqrt{1136}}{2\left(-5\right)}
Add 36 to 1100.
x=\frac{-6±4\sqrt{71}}{2\left(-5\right)}
Take the square root of 1136.
x=\frac{-6±4\sqrt{71}}{-10}
Multiply 2 times -5.
x=\frac{4\sqrt{71}-6}{-10}
Now solve the equation x=\frac{-6±4\sqrt{71}}{-10} when ± is plus. Add -6 to 4\sqrt{71}.
x=\frac{3-2\sqrt{71}}{5}
Divide -6+4\sqrt{71} by -10.
x=\frac{-4\sqrt{71}-6}{-10}
Now solve the equation x=\frac{-6±4\sqrt{71}}{-10} when ± is minus. Subtract 4\sqrt{71} from -6.
x=\frac{2\sqrt{71}+3}{5}
Divide -6-4\sqrt{71} by -10.
-5x^{2}+6x+55=-5\left(x-\frac{3-2\sqrt{71}}{5}\right)\left(x-\frac{2\sqrt{71}+3}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3-2\sqrt{71}}{5} for x_{1} and \frac{3+2\sqrt{71}}{5} for x_{2}.