Solve for x
x=2\sqrt{10}+10\approx 16.32455532
x=10-2\sqrt{10}\approx 3.67544468
Graph
Share
Copied to clipboard
-5x^{2}+100x-300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-5\right)\left(-300\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 100 for b, and -300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-5\right)\left(-300\right)}}{2\left(-5\right)}
Square 100.
x=\frac{-100±\sqrt{10000+20\left(-300\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-100±\sqrt{10000-6000}}{2\left(-5\right)}
Multiply 20 times -300.
x=\frac{-100±\sqrt{4000}}{2\left(-5\right)}
Add 10000 to -6000.
x=\frac{-100±20\sqrt{10}}{2\left(-5\right)}
Take the square root of 4000.
x=\frac{-100±20\sqrt{10}}{-10}
Multiply 2 times -5.
x=\frac{20\sqrt{10}-100}{-10}
Now solve the equation x=\frac{-100±20\sqrt{10}}{-10} when ± is plus. Add -100 to 20\sqrt{10}.
x=10-2\sqrt{10}
Divide -100+20\sqrt{10} by -10.
x=\frac{-20\sqrt{10}-100}{-10}
Now solve the equation x=\frac{-100±20\sqrt{10}}{-10} when ± is minus. Subtract 20\sqrt{10} from -100.
x=2\sqrt{10}+10
Divide -100-20\sqrt{10} by -10.
x=10-2\sqrt{10} x=2\sqrt{10}+10
The equation is now solved.
-5x^{2}+100x-300=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-5x^{2}+100x-300-\left(-300\right)=-\left(-300\right)
Add 300 to both sides of the equation.
-5x^{2}+100x=-\left(-300\right)
Subtracting -300 from itself leaves 0.
-5x^{2}+100x=300
Subtract -300 from 0.
\frac{-5x^{2}+100x}{-5}=\frac{300}{-5}
Divide both sides by -5.
x^{2}+\frac{100}{-5}x=\frac{300}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-20x=\frac{300}{-5}
Divide 100 by -5.
x^{2}-20x=-60
Divide 300 by -5.
x^{2}-20x+\left(-10\right)^{2}=-60+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=-60+100
Square -10.
x^{2}-20x+100=40
Add -60 to 100.
\left(x-10\right)^{2}=40
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{40}
Take the square root of both sides of the equation.
x-10=2\sqrt{10} x-10=-2\sqrt{10}
Simplify.
x=2\sqrt{10}+10 x=10-2\sqrt{10}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}