Solve for x
x=-\frac{4y}{3}+\frac{2}{15}
Solve for y
y=-\frac{3x}{4}+\frac{1}{10}
Graph
Share
Copied to clipboard
-15x+30+4\left(-5y-7\right)=0
Use the distributive property to multiply -5 by 3x-6.
-15x+30-20y-28=0
Use the distributive property to multiply 4 by -5y-7.
-15x+2-20y=0
Subtract 28 from 30 to get 2.
-15x-20y=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
-15x=-2+20y
Add 20y to both sides.
-15x=20y-2
The equation is in standard form.
\frac{-15x}{-15}=\frac{20y-2}{-15}
Divide both sides by -15.
x=\frac{20y-2}{-15}
Dividing by -15 undoes the multiplication by -15.
x=-\frac{4y}{3}+\frac{2}{15}
Divide -2+20y by -15.
-15x+30+4\left(-5y-7\right)=0
Use the distributive property to multiply -5 by 3x-6.
-15x+30-20y-28=0
Use the distributive property to multiply 4 by -5y-7.
-15x+2-20y=0
Subtract 28 from 30 to get 2.
2-20y=15x
Add 15x to both sides. Anything plus zero gives itself.
-20y=15x-2
Subtract 2 from both sides.
\frac{-20y}{-20}=\frac{15x-2}{-20}
Divide both sides by -20.
y=\frac{15x-2}{-20}
Dividing by -20 undoes the multiplication by -20.
y=-\frac{3x}{4}+\frac{1}{10}
Divide 15x-2 by -20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}