Solve for v
v\leq \frac{31}{6}
Share
Copied to clipboard
-5\left(2.4v-4\right)\geq -6\left(0.8+1.2v\right)
Multiply 1 and 4 to get 4.
-12v+20\geq -6\left(0.8+1.2v\right)
Use the distributive property to multiply -5 by 2.4v-4.
-12v+20\geq -4.8-7.2v
Use the distributive property to multiply -6 by 0.8+1.2v.
-12v+20+7.2v\geq -4.8
Add 7.2v to both sides.
-4.8v+20\geq -4.8
Combine -12v and 7.2v to get -4.8v.
-4.8v\geq -4.8-20
Subtract 20 from both sides.
-4.8v\geq -24.8
Subtract 20 from -4.8 to get -24.8.
v\leq \frac{-24.8}{-4.8}
Divide both sides by -4.8. Since -4.8 is negative, the inequality direction is changed.
v\leq \frac{-248}{-48}
Expand \frac{-24.8}{-4.8} by multiplying both numerator and the denominator by 10.
v\leq \frac{31}{6}
Reduce the fraction \frac{-248}{-48} to lowest terms by extracting and canceling out -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}