Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}+4x=2x-2
Use the distributive property to multiply -4x by x-1.
-4x^{2}+4x-2x=-2
Subtract 2x from both sides.
-4x^{2}+2x=-2
Combine 4x and -2x to get 2x.
-4x^{2}+2x+2=0
Add 2 to both sides.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 2 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)\times 2}}{2\left(-4\right)}
Square 2.
x=\frac{-2±\sqrt{4+16\times 2}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-2±\sqrt{4+32}}{2\left(-4\right)}
Multiply 16 times 2.
x=\frac{-2±\sqrt{36}}{2\left(-4\right)}
Add 4 to 32.
x=\frac{-2±6}{2\left(-4\right)}
Take the square root of 36.
x=\frac{-2±6}{-8}
Multiply 2 times -4.
x=\frac{4}{-8}
Now solve the equation x=\frac{-2±6}{-8} when ± is plus. Add -2 to 6.
x=-\frac{1}{2}
Reduce the fraction \frac{4}{-8} to lowest terms by extracting and canceling out 4.
x=-\frac{8}{-8}
Now solve the equation x=\frac{-2±6}{-8} when ± is minus. Subtract 6 from -2.
x=1
Divide -8 by -8.
x=-\frac{1}{2} x=1
The equation is now solved.
-4x^{2}+4x=2x-2
Use the distributive property to multiply -4x by x-1.
-4x^{2}+4x-2x=-2
Subtract 2x from both sides.
-4x^{2}+2x=-2
Combine 4x and -2x to get 2x.
\frac{-4x^{2}+2x}{-4}=-\frac{2}{-4}
Divide both sides by -4.
x^{2}+\frac{2}{-4}x=-\frac{2}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-\frac{1}{2}x=-\frac{2}{-4}
Reduce the fraction \frac{2}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Add \frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{4}\right)^{2}=\frac{9}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{3}{4} x-\frac{1}{4}=-\frac{3}{4}
Simplify.
x=1 x=-\frac{1}{2}
Add \frac{1}{4} to both sides of the equation.