Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-48x^{2}+23x+35=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-23±\sqrt{23^{2}-4\left(-48\right)\times 35}}{2\left(-48\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-23±\sqrt{529-4\left(-48\right)\times 35}}{2\left(-48\right)}
Square 23.
x=\frac{-23±\sqrt{529+192\times 35}}{2\left(-48\right)}
Multiply -4 times -48.
x=\frac{-23±\sqrt{529+6720}}{2\left(-48\right)}
Multiply 192 times 35.
x=\frac{-23±\sqrt{7249}}{2\left(-48\right)}
Add 529 to 6720.
x=\frac{-23±\sqrt{7249}}{-96}
Multiply 2 times -48.
x=\frac{\sqrt{7249}-23}{-96}
Now solve the equation x=\frac{-23±\sqrt{7249}}{-96} when ± is plus. Add -23 to \sqrt{7249}.
x=\frac{23-\sqrt{7249}}{96}
Divide -23+\sqrt{7249} by -96.
x=\frac{-\sqrt{7249}-23}{-96}
Now solve the equation x=\frac{-23±\sqrt{7249}}{-96} when ± is minus. Subtract \sqrt{7249} from -23.
x=\frac{\sqrt{7249}+23}{96}
Divide -23-\sqrt{7249} by -96.
-48x^{2}+23x+35=-48\left(x-\frac{23-\sqrt{7249}}{96}\right)\left(x-\frac{\sqrt{7249}+23}{96}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{23-\sqrt{7249}}{96} for x_{1} and \frac{23+\sqrt{7249}}{96} for x_{2}.