Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4.9x^{2}+307x+248=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-307±\sqrt{307^{2}-4\left(-4.9\right)\times 248}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 307 for b, and 248 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-307±\sqrt{94249-4\left(-4.9\right)\times 248}}{2\left(-4.9\right)}
Square 307.
x=\frac{-307±\sqrt{94249+19.6\times 248}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
x=\frac{-307±\sqrt{94249+4860.8}}{2\left(-4.9\right)}
Multiply 19.6 times 248.
x=\frac{-307±\sqrt{99109.8}}{2\left(-4.9\right)}
Add 94249 to 4860.8.
x=\frac{-307±\frac{3\sqrt{275305}}{5}}{2\left(-4.9\right)}
Take the square root of 99109.8.
x=\frac{-307±\frac{3\sqrt{275305}}{5}}{-9.8}
Multiply 2 times -4.9.
x=\frac{\frac{3\sqrt{275305}}{5}-307}{-9.8}
Now solve the equation x=\frac{-307±\frac{3\sqrt{275305}}{5}}{-9.8} when ± is plus. Add -307 to \frac{3\sqrt{275305}}{5}.
x=\frac{1535-3\sqrt{275305}}{49}
Divide -307+\frac{3\sqrt{275305}}{5} by -9.8 by multiplying -307+\frac{3\sqrt{275305}}{5} by the reciprocal of -9.8.
x=\frac{-\frac{3\sqrt{275305}}{5}-307}{-9.8}
Now solve the equation x=\frac{-307±\frac{3\sqrt{275305}}{5}}{-9.8} when ± is minus. Subtract \frac{3\sqrt{275305}}{5} from -307.
x=\frac{3\sqrt{275305}+1535}{49}
Divide -307-\frac{3\sqrt{275305}}{5} by -9.8 by multiplying -307-\frac{3\sqrt{275305}}{5} by the reciprocal of -9.8.
x=\frac{1535-3\sqrt{275305}}{49} x=\frac{3\sqrt{275305}+1535}{49}
The equation is now solved.
-4.9x^{2}+307x+248=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4.9x^{2}+307x+248-248=-248
Subtract 248 from both sides of the equation.
-4.9x^{2}+307x=-248
Subtracting 248 from itself leaves 0.
\frac{-4.9x^{2}+307x}{-4.9}=-\frac{248}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{307}{-4.9}x=-\frac{248}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
x^{2}-\frac{3070}{49}x=-\frac{248}{-4.9}
Divide 307 by -4.9 by multiplying 307 by the reciprocal of -4.9.
x^{2}-\frac{3070}{49}x=\frac{2480}{49}
Divide -248 by -4.9 by multiplying -248 by the reciprocal of -4.9.
x^{2}-\frac{3070}{49}x+\left(-\frac{1535}{49}\right)^{2}=\frac{2480}{49}+\left(-\frac{1535}{49}\right)^{2}
Divide -\frac{3070}{49}, the coefficient of the x term, by 2 to get -\frac{1535}{49}. Then add the square of -\frac{1535}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3070}{49}x+\frac{2356225}{2401}=\frac{2480}{49}+\frac{2356225}{2401}
Square -\frac{1535}{49} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3070}{49}x+\frac{2356225}{2401}=\frac{2477745}{2401}
Add \frac{2480}{49} to \frac{2356225}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1535}{49}\right)^{2}=\frac{2477745}{2401}
Factor x^{2}-\frac{3070}{49}x+\frac{2356225}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1535}{49}\right)^{2}}=\sqrt{\frac{2477745}{2401}}
Take the square root of both sides of the equation.
x-\frac{1535}{49}=\frac{3\sqrt{275305}}{49} x-\frac{1535}{49}=-\frac{3\sqrt{275305}}{49}
Simplify.
x=\frac{3\sqrt{275305}+1535}{49} x=\frac{1535-3\sqrt{275305}}{49}
Add \frac{1535}{49} to both sides of the equation.