Solve for x
x=\frac{y-4}{6}
Solve for y
y=6x+4
Graph
Share
Copied to clipboard
-6x=-y+4
Add 4 to both sides.
-6x=4-y
The equation is in standard form.
\frac{-6x}{-6}=\frac{4-y}{-6}
Divide both sides by -6.
x=\frac{4-y}{-6}
Dividing by -6 undoes the multiplication by -6.
x=\frac{y}{6}-\frac{2}{3}
Divide -y+4 by -6.
-y=-4-6x
Swap sides so that all variable terms are on the left hand side.
-y=-6x-4
The equation is in standard form.
\frac{-y}{-1}=\frac{-6x-4}{-1}
Divide both sides by -1.
y=\frac{-6x-4}{-1}
Dividing by -1 undoes the multiplication by -1.
y=6x+4
Divide -4-6x by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}