Solve for x
x=\frac{3\sqrt{17}-11}{4}\approx 0.342329219
x=\frac{-3\sqrt{17}-11}{4}\approx -5.842329219
Graph
Share
Copied to clipboard
-4x-2x^{2}=7x-4
Subtract 2x^{2} from both sides.
-4x-2x^{2}-7x=-4
Subtract 7x from both sides.
-11x-2x^{2}=-4
Combine -4x and -7x to get -11x.
-11x-2x^{2}+4=0
Add 4 to both sides.
-2x^{2}-11x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-2\right)\times 4}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -11 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-2\right)\times 4}}{2\left(-2\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+8\times 4}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-11\right)±\sqrt{121+32}}{2\left(-2\right)}
Multiply 8 times 4.
x=\frac{-\left(-11\right)±\sqrt{153}}{2\left(-2\right)}
Add 121 to 32.
x=\frac{-\left(-11\right)±3\sqrt{17}}{2\left(-2\right)}
Take the square root of 153.
x=\frac{11±3\sqrt{17}}{2\left(-2\right)}
The opposite of -11 is 11.
x=\frac{11±3\sqrt{17}}{-4}
Multiply 2 times -2.
x=\frac{3\sqrt{17}+11}{-4}
Now solve the equation x=\frac{11±3\sqrt{17}}{-4} when ± is plus. Add 11 to 3\sqrt{17}.
x=\frac{-3\sqrt{17}-11}{4}
Divide 11+3\sqrt{17} by -4.
x=\frac{11-3\sqrt{17}}{-4}
Now solve the equation x=\frac{11±3\sqrt{17}}{-4} when ± is minus. Subtract 3\sqrt{17} from 11.
x=\frac{3\sqrt{17}-11}{4}
Divide 11-3\sqrt{17} by -4.
x=\frac{-3\sqrt{17}-11}{4} x=\frac{3\sqrt{17}-11}{4}
The equation is now solved.
-4x-2x^{2}=7x-4
Subtract 2x^{2} from both sides.
-4x-2x^{2}-7x=-4
Subtract 7x from both sides.
-11x-2x^{2}=-4
Combine -4x and -7x to get -11x.
-2x^{2}-11x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}-11x}{-2}=-\frac{4}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{11}{-2}\right)x=-\frac{4}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+\frac{11}{2}x=-\frac{4}{-2}
Divide -11 by -2.
x^{2}+\frac{11}{2}x=2
Divide -4 by -2.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=2+\left(\frac{11}{4}\right)^{2}
Divide \frac{11}{2}, the coefficient of the x term, by 2 to get \frac{11}{4}. Then add the square of \frac{11}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{2}x+\frac{121}{16}=2+\frac{121}{16}
Square \frac{11}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{153}{16}
Add 2 to \frac{121}{16}.
\left(x+\frac{11}{4}\right)^{2}=\frac{153}{16}
Factor x^{2}+\frac{11}{2}x+\frac{121}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{153}{16}}
Take the square root of both sides of the equation.
x+\frac{11}{4}=\frac{3\sqrt{17}}{4} x+\frac{11}{4}=-\frac{3\sqrt{17}}{4}
Simplify.
x=\frac{3\sqrt{17}-11}{4} x=\frac{-3\sqrt{17}-11}{4}
Subtract \frac{11}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}