Solve for x
x=-\frac{1}{8}=-0.125
Graph
Share
Copied to clipboard
-4x-4+2x=3\left(2x-1\right)
Use the distributive property to multiply -4 by x+1.
-2x-4=3\left(2x-1\right)
Combine -4x and 2x to get -2x.
-2x-4=6x-3
Use the distributive property to multiply 3 by 2x-1.
-2x-4-6x=-3
Subtract 6x from both sides.
-8x-4=-3
Combine -2x and -6x to get -8x.
-8x=-3+4
Add 4 to both sides.
-8x=1
Add -3 and 4 to get 1.
x=\frac{1}{-8}
Divide both sides by -8.
x=-\frac{1}{8}
Fraction \frac{1}{-8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}