-4(- { \left( \sqrt{ (x \div 2)-3 } \right) }^{ 2 } -3
Evaluate
2x
Differentiate w.r.t. x
2
Graph
Share
Copied to clipboard
-4\left(-\left(\sqrt{\frac{x}{2}-\frac{3\times 2}{2}}\right)^{2}-3\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
-4\left(-\left(\sqrt{\frac{x-3\times 2}{2}}\right)^{2}-3\right)
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
-4\left(-\left(\sqrt{\frac{x-6}{2}}\right)^{2}-3\right)
Do the multiplications in x-3\times 2.
-4\left(-\frac{x-6}{2}-3\right)
Calculate \sqrt{\frac{x-6}{2}} to the power of 2 and get \frac{x-6}{2}.
-4\left(-\frac{x-6}{2}-\frac{3\times 2}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
-4\times \frac{-\left(x-6\right)-3\times 2}{2}
Since -\frac{x-6}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
-4\times \frac{-x+6-6}{2}
Do the multiplications in -\left(x-6\right)-3\times 2.
-4\times \frac{-x}{2}
Combine like terms in -x+6-6.
-2\left(-1\right)x
Cancel out 2, the greatest common factor in 4 and 2.
2x
Multiply -2 and -1 to get 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x}{2}-\frac{3\times 2}{2}}\right)^{2}-3\right))
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x-3\times 2}{2}}\right)^{2}-3\right))
Since \frac{x}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\left(\sqrt{\frac{x-6}{2}}\right)^{2}-3\right))
Do the multiplications in x-3\times 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\frac{x-6}{2}-3\right))
Calculate \sqrt{\frac{x-6}{2}} to the power of 2 and get \frac{x-6}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\left(-\frac{x-6}{2}-\frac{3\times 2}{2}\right))
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-\left(x-6\right)-3\times 2}{2})
Since -\frac{x-6}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-x+6-6}{2})
Do the multiplications in -\left(x-6\right)-3\times 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-4\times \frac{-x}{2})
Combine like terms in -x+6-6.
\frac{\mathrm{d}}{\mathrm{d}x}(-2\left(-1\right)x)
Cancel out 2, the greatest common factor in 4 and 2.
\frac{\mathrm{d}}{\mathrm{d}x}(2x)
Multiply -2 and -1 to get 2.
2x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
2x^{0}
Subtract 1 from 1.
2\times 1
For any term t except 0, t^{0}=1.
2
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}