Factor
-4\left(y+1\right)\left(y+3\right)
Evaluate
-4\left(y+1\right)\left(y+3\right)
Graph
Share
Copied to clipboard
4\left(-y^{2}-4y-3\right)
Factor out 4.
a+b=-4 ab=-\left(-3\right)=3
Consider -y^{2}-4y-3. Factor the expression by grouping. First, the expression needs to be rewritten as -y^{2}+ay+by-3. To find a and b, set up a system to be solved.
a=-1 b=-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(-y^{2}-y\right)+\left(-3y-3\right)
Rewrite -y^{2}-4y-3 as \left(-y^{2}-y\right)+\left(-3y-3\right).
y\left(-y-1\right)+3\left(-y-1\right)
Factor out y in the first and 3 in the second group.
\left(-y-1\right)\left(y+3\right)
Factor out common term -y-1 by using distributive property.
4\left(-y-1\right)\left(y+3\right)
Rewrite the complete factored expression.
-4y^{2}-16y-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-4\right)\left(-12\right)}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-16\right)±\sqrt{256-4\left(-4\right)\left(-12\right)}}{2\left(-4\right)}
Square -16.
y=\frac{-\left(-16\right)±\sqrt{256+16\left(-12\right)}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-\left(-16\right)±\sqrt{256-192}}{2\left(-4\right)}
Multiply 16 times -12.
y=\frac{-\left(-16\right)±\sqrt{64}}{2\left(-4\right)}
Add 256 to -192.
y=\frac{-\left(-16\right)±8}{2\left(-4\right)}
Take the square root of 64.
y=\frac{16±8}{2\left(-4\right)}
The opposite of -16 is 16.
y=\frac{16±8}{-8}
Multiply 2 times -4.
y=\frac{24}{-8}
Now solve the equation y=\frac{16±8}{-8} when ± is plus. Add 16 to 8.
y=-3
Divide 24 by -8.
y=\frac{8}{-8}
Now solve the equation y=\frac{16±8}{-8} when ± is minus. Subtract 8 from 16.
y=-1
Divide 8 by -8.
-4y^{2}-16y-12=-4\left(y-\left(-3\right)\right)\left(y-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -3 for x_{1} and -1 for x_{2}.
-4y^{2}-16y-12=-4\left(y+3\right)\left(y+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}