Factor
2\left(-2x^{2}-32x-131\right)
Evaluate
-4x^{2}-64x-262
Graph
Share
Copied to clipboard
2\left(-2x^{2}-32x-131\right)
Factor out 2. Polynomial -2x^{2}-32x-131 is not factored since it does not have any rational roots.
-4x^{2}-64x-262=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\left(-4\right)\left(-262\right)}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-64\right)±\sqrt{4096-4\left(-4\right)\left(-262\right)}}{2\left(-4\right)}
Square -64.
x=\frac{-\left(-64\right)±\sqrt{4096+16\left(-262\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-64\right)±\sqrt{4096-4192}}{2\left(-4\right)}
Multiply 16 times -262.
x=\frac{-\left(-64\right)±\sqrt{-96}}{2\left(-4\right)}
Add 4096 to -4192.
-4x^{2}-64x-262
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}