Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(-4x+29\right)
Factor out x.
-4x^{2}+29x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-29±\sqrt{29^{2}}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-29±29}{2\left(-4\right)}
Take the square root of 29^{2}.
x=\frac{-29±29}{-8}
Multiply 2 times -4.
x=\frac{0}{-8}
Now solve the equation x=\frac{-29±29}{-8} when ± is plus. Add -29 to 29.
x=0
Divide 0 by -8.
x=-\frac{58}{-8}
Now solve the equation x=\frac{-29±29}{-8} when ± is minus. Subtract 29 from -29.
x=\frac{29}{4}
Reduce the fraction \frac{-58}{-8} to lowest terms by extracting and canceling out 2.
-4x^{2}+29x=-4x\left(x-\frac{29}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{29}{4} for x_{2}.
-4x^{2}+29x=-4x\times \frac{-4x+29}{-4}
Subtract \frac{29}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-4x^{2}+29x=x\left(-4x+29\right)
Cancel out 4, the greatest common factor in -4 and -4.