Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(-x^{2}+65x+350\right)
Factor out 4.
a+b=65 ab=-350=-350
Consider -x^{2}+65x+350. Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+350. To find a and b, set up a system to be solved.
-1,350 -2,175 -5,70 -7,50 -10,35 -14,25
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -350.
-1+350=349 -2+175=173 -5+70=65 -7+50=43 -10+35=25 -14+25=11
Calculate the sum for each pair.
a=70 b=-5
The solution is the pair that gives sum 65.
\left(-x^{2}+70x\right)+\left(-5x+350\right)
Rewrite -x^{2}+65x+350 as \left(-x^{2}+70x\right)+\left(-5x+350\right).
-x\left(x-70\right)-5\left(x-70\right)
Factor out -x in the first and -5 in the second group.
\left(x-70\right)\left(-x-5\right)
Factor out common term x-70 by using distributive property.
4\left(x-70\right)\left(-x-5\right)
Rewrite the complete factored expression.
-4x^{2}+260x+1400=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-260±\sqrt{260^{2}-4\left(-4\right)\times 1400}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-260±\sqrt{67600-4\left(-4\right)\times 1400}}{2\left(-4\right)}
Square 260.
x=\frac{-260±\sqrt{67600+16\times 1400}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-260±\sqrt{67600+22400}}{2\left(-4\right)}
Multiply 16 times 1400.
x=\frac{-260±\sqrt{90000}}{2\left(-4\right)}
Add 67600 to 22400.
x=\frac{-260±300}{2\left(-4\right)}
Take the square root of 90000.
x=\frac{-260±300}{-8}
Multiply 2 times -4.
x=\frac{40}{-8}
Now solve the equation x=\frac{-260±300}{-8} when ± is plus. Add -260 to 300.
x=-5
Divide 40 by -8.
x=-\frac{560}{-8}
Now solve the equation x=\frac{-260±300}{-8} when ± is minus. Subtract 300 from -260.
x=70
Divide -560 by -8.
-4x^{2}+260x+1400=-4\left(x-\left(-5\right)\right)\left(x-70\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -5 for x_{1} and 70 for x_{2}.
-4x^{2}+260x+1400=-4\left(x+5\right)\left(x-70\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.