Solve for m
m = \frac{\sqrt{249} + 3}{8} \approx 2.34746673
m=\frac{3-\sqrt{249}}{8}\approx -1.59746673
Share
Copied to clipboard
-4m^{2}+3m+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 15}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 3 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-3±\sqrt{9-4\left(-4\right)\times 15}}{2\left(-4\right)}
Square 3.
m=\frac{-3±\sqrt{9+16\times 15}}{2\left(-4\right)}
Multiply -4 times -4.
m=\frac{-3±\sqrt{9+240}}{2\left(-4\right)}
Multiply 16 times 15.
m=\frac{-3±\sqrt{249}}{2\left(-4\right)}
Add 9 to 240.
m=\frac{-3±\sqrt{249}}{-8}
Multiply 2 times -4.
m=\frac{\sqrt{249}-3}{-8}
Now solve the equation m=\frac{-3±\sqrt{249}}{-8} when ± is plus. Add -3 to \sqrt{249}.
m=\frac{3-\sqrt{249}}{8}
Divide -3+\sqrt{249} by -8.
m=\frac{-\sqrt{249}-3}{-8}
Now solve the equation m=\frac{-3±\sqrt{249}}{-8} when ± is minus. Subtract \sqrt{249} from -3.
m=\frac{\sqrt{249}+3}{8}
Divide -3-\sqrt{249} by -8.
m=\frac{3-\sqrt{249}}{8} m=\frac{\sqrt{249}+3}{8}
The equation is now solved.
-4m^{2}+3m+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-4m^{2}+3m+15-15=-15
Subtract 15 from both sides of the equation.
-4m^{2}+3m=-15
Subtracting 15 from itself leaves 0.
\frac{-4m^{2}+3m}{-4}=-\frac{15}{-4}
Divide both sides by -4.
m^{2}+\frac{3}{-4}m=-\frac{15}{-4}
Dividing by -4 undoes the multiplication by -4.
m^{2}-\frac{3}{4}m=-\frac{15}{-4}
Divide 3 by -4.
m^{2}-\frac{3}{4}m=\frac{15}{4}
Divide -15 by -4.
m^{2}-\frac{3}{4}m+\left(-\frac{3}{8}\right)^{2}=\frac{15}{4}+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{3}{4}m+\frac{9}{64}=\frac{15}{4}+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{3}{4}m+\frac{9}{64}=\frac{249}{64}
Add \frac{15}{4} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{3}{8}\right)^{2}=\frac{249}{64}
Factor m^{2}-\frac{3}{4}m+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{3}{8}\right)^{2}}=\sqrt{\frac{249}{64}}
Take the square root of both sides of the equation.
m-\frac{3}{8}=\frac{\sqrt{249}}{8} m-\frac{3}{8}=-\frac{\sqrt{249}}{8}
Simplify.
m=\frac{\sqrt{249}+3}{8} m=\frac{3-\sqrt{249}}{8}
Add \frac{3}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}