Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-37.46x^{2}+57768x+13100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-57768±\sqrt{57768^{2}-4\left(-37.46\right)\times 13100}}{2\left(-37.46\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -37.46 for a, 57768 for b, and 13100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-57768±\sqrt{3337141824-4\left(-37.46\right)\times 13100}}{2\left(-37.46\right)}
Square 57768.
x=\frac{-57768±\sqrt{3337141824+149.84\times 13100}}{2\left(-37.46\right)}
Multiply -4 times -37.46.
x=\frac{-57768±\sqrt{3337141824+1962904}}{2\left(-37.46\right)}
Multiply 149.84 times 13100.
x=\frac{-57768±\sqrt{3339104728}}{2\left(-37.46\right)}
Add 3337141824 to 1962904.
x=\frac{-57768±2\sqrt{834776182}}{2\left(-37.46\right)}
Take the square root of 3339104728.
x=\frac{-57768±2\sqrt{834776182}}{-74.92}
Multiply 2 times -37.46.
x=\frac{2\sqrt{834776182}-57768}{-74.92}
Now solve the equation x=\frac{-57768±2\sqrt{834776182}}{-74.92} when ± is plus. Add -57768 to 2\sqrt{834776182}.
x=\frac{1444200-50\sqrt{834776182}}{1873}
Divide -57768+2\sqrt{834776182} by -74.92 by multiplying -57768+2\sqrt{834776182} by the reciprocal of -74.92.
x=\frac{-2\sqrt{834776182}-57768}{-74.92}
Now solve the equation x=\frac{-57768±2\sqrt{834776182}}{-74.92} when ± is minus. Subtract 2\sqrt{834776182} from -57768.
x=\frac{50\sqrt{834776182}+1444200}{1873}
Divide -57768-2\sqrt{834776182} by -74.92 by multiplying -57768-2\sqrt{834776182} by the reciprocal of -74.92.
x=\frac{1444200-50\sqrt{834776182}}{1873} x=\frac{50\sqrt{834776182}+1444200}{1873}
The equation is now solved.
-37.46x^{2}+57768x+13100=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-37.46x^{2}+57768x+13100-13100=-13100
Subtract 13100 from both sides of the equation.
-37.46x^{2}+57768x=-13100
Subtracting 13100 from itself leaves 0.
\frac{-37.46x^{2}+57768x}{-37.46}=-\frac{13100}{-37.46}
Divide both sides of the equation by -37.46, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{57768}{-37.46}x=-\frac{13100}{-37.46}
Dividing by -37.46 undoes the multiplication by -37.46.
x^{2}-\frac{2888400}{1873}x=-\frac{13100}{-37.46}
Divide 57768 by -37.46 by multiplying 57768 by the reciprocal of -37.46.
x^{2}-\frac{2888400}{1873}x=\frac{655000}{1873}
Divide -13100 by -37.46 by multiplying -13100 by the reciprocal of -37.46.
x^{2}-\frac{2888400}{1873}x+\left(-\frac{1444200}{1873}\right)^{2}=\frac{655000}{1873}+\left(-\frac{1444200}{1873}\right)^{2}
Divide -\frac{2888400}{1873}, the coefficient of the x term, by 2 to get -\frac{1444200}{1873}. Then add the square of -\frac{1444200}{1873} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2888400}{1873}x+\frac{2085713640000}{3508129}=\frac{655000}{1873}+\frac{2085713640000}{3508129}
Square -\frac{1444200}{1873} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2888400}{1873}x+\frac{2085713640000}{3508129}=\frac{2086940455000}{3508129}
Add \frac{655000}{1873} to \frac{2085713640000}{3508129} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1444200}{1873}\right)^{2}=\frac{2086940455000}{3508129}
Factor x^{2}-\frac{2888400}{1873}x+\frac{2085713640000}{3508129}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1444200}{1873}\right)^{2}}=\sqrt{\frac{2086940455000}{3508129}}
Take the square root of both sides of the equation.
x-\frac{1444200}{1873}=\frac{50\sqrt{834776182}}{1873} x-\frac{1444200}{1873}=-\frac{50\sqrt{834776182}}{1873}
Simplify.
x=\frac{50\sqrt{834776182}+1444200}{1873} x=\frac{1444200-50\sqrt{834776182}}{1873}
Add \frac{1444200}{1873} to both sides of the equation.